Neural network for image-to-image control of optical tweezers

A. Decker, R. Anderson, K. E. Weiland, S. Wrbanek
{"title":"Neural network for image-to-image control of optical tweezers","authors":"A. Decker, R. Anderson, K. E. Weiland, S. Wrbanek","doi":"10.1117/12.559564","DOIUrl":null,"url":null,"abstract":"A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480X480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100X100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480X480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.559564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480X480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100X100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480X480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光镊图像对图像控制的神经网络
讨论了一种利用神经网络控制光镊的方法。神经网络输出与缩放和平铺相结合,为空间光调制器(SLM)生成480x480像素的控制模式。SLM可以以各种方式与显微镜组合,以创建具有可控轮廓的可移动镊子陷阱。神经网络旨在对碳和碳化硅纳米管传感器发出的散射光做出反应。纳米管传感器被夹在陷阱中进行操作和校准。缩放和平铺允许分阶段应用神经网络软件的100x100像素最大分辨率,以利用SLM的全部480x480像素分辨率。其中一个阶段旨在制造灵敏的零探测器,用于检测来自纳米管传感器的散射光的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural network for image-to-image control of optical tweezers Atmospheric turbulence simulation using liquid crystal spatial light modulators Atmospheric simulation using a liquid crystal wavefront-controlling device Spectral sensitivity of the circadian system Generating entangled states of two ququarts using linear optical elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1