Hao Ge, Jinchao Huang, C. Di, Jianhua Li, Shenghong Li
{"title":"Learning Automata Based Approach for Influence Maximization Problem on Social Networks","authors":"Hao Ge, Jinchao Huang, C. Di, Jianhua Li, Shenghong Li","doi":"10.1109/DSC.2017.54","DOIUrl":null,"url":null,"abstract":"Influence maximization problem aims at targeting a subset of entities in a network such that the influence cascade being maximized. It is proved to be a NP-hard problem, and many approximate solutions have been proposed. The state-ofart approach is known as CELF, who evaluates the marginal influence spread of each entity by Monte-Carlo simulation and picks the most influential entity in each round. However, as the cost of Monte-Carlo simulations is in proportion to the scale of network, which limits the application of CELF in real-world networks. Learning automata (LA) is a promising technique potential solution to many engineering problem. In this paper, we extend the confidence interval estimator based learning automata to S-model environment, based on this, an end-to-end approach for influence maximization is proposed, simulation on three real-world networks demonstrate that the proposed approach attains as large influence spread as CELF, and with a higher computational efficiency.","PeriodicalId":427998,"journal":{"name":"2017 IEEE Second International Conference on Data Science in Cyberspace (DSC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Second International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC.2017.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Influence maximization problem aims at targeting a subset of entities in a network such that the influence cascade being maximized. It is proved to be a NP-hard problem, and many approximate solutions have been proposed. The state-ofart approach is known as CELF, who evaluates the marginal influence spread of each entity by Monte-Carlo simulation and picks the most influential entity in each round. However, as the cost of Monte-Carlo simulations is in proportion to the scale of network, which limits the application of CELF in real-world networks. Learning automata (LA) is a promising technique potential solution to many engineering problem. In this paper, we extend the confidence interval estimator based learning automata to S-model environment, based on this, an end-to-end approach for influence maximization is proposed, simulation on three real-world networks demonstrate that the proposed approach attains as large influence spread as CELF, and with a higher computational efficiency.