Q-Networks with Dynamically Loaded Biases for Personalization

Ján Magyar, P. Sinčák
{"title":"Q-Networks with Dynamically Loaded Biases for Personalization","authors":"Ján Magyar, P. Sinčák","doi":"10.1109/SAMI50585.2021.9378651","DOIUrl":null,"url":null,"abstract":"Personalization is ever more prevalent in digital systems in various application domains. Reinforcement learning is a method often applied to adjust a system's behavior to the user's preferences, but there are a number of hurdles when applying it in this context. We propose a novel neural network architecture for reinforcement learning agents specifically tailored to support personalization - Dynamically Loaded Biases Q-Network. We test our architecture on two environments simulating a personalization task and show that it can simultaneously learn a general behavior and adjust it to different environments.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Personalization is ever more prevalent in digital systems in various application domains. Reinforcement learning is a method often applied to adjust a system's behavior to the user's preferences, but there are a number of hurdles when applying it in this context. We propose a novel neural network architecture for reinforcement learning agents specifically tailored to support personalization - Dynamically Loaded Biases Q-Network. We test our architecture on two environments simulating a personalization task and show that it can simultaneously learn a general behavior and adjust it to different environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有动态加载偏差的q网络
个性化在各种应用领域的数字系统中越来越普遍。强化学习是一种经常用于根据用户偏好调整系统行为的方法,但在这种情况下应用它存在许多障碍。我们提出了一种新的神经网络架构,用于专门为支持个性化定制的强化学习代理——动态加载偏差q网络。我们在模拟个性化任务的两个环境中测试了我们的架构,并表明它可以同时学习一般行为并调整它以适应不同的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usage of RAPTOR for travel time minimizing journey planner Slip Control by Identifying the Magnetic Field of the Elements of an Asynchronous Motor Supervised Operational Change Point Detection using Ensemble Long-Short Term Memory in a Multicomponent Industrial System Improving the activity recognition using GMAF and transfer learning in post-stroke rehabilitation assessment A Baseline Assessment Method of UAV Swarm Resilience Based on Complex Networks*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1