The effect of eight-week resistance training and consumption of grape seed nanoparticles on mitochondrial biogenesis of heart tissue in the myocardial infarction model
Ebrahim Khaki, Khosro Jalali Dehkordi, F. Taghian, S. Hoseini
{"title":"The effect of eight-week resistance training and consumption of grape seed nanoparticles on mitochondrial biogenesis of heart tissue in the myocardial infarction model","authors":"Ebrahim Khaki, Khosro Jalali Dehkordi, F. Taghian, S. Hoseini","doi":"10.34172/jsums.2022.31","DOIUrl":null,"url":null,"abstract":"Background and aims: The consumption of grape seed nanoparticles extract can control cardiovascular risk factors. Exercise plays a protective role against cardiovascular disease. Therefore, the aim of the present study was to investigate the effect of eight-week resistance training (RT) and the use of grape seed nanoparticles on mitochondrial biogenesis of heart tissue in myocardial infarction (MI) models. Methods: In this experimental study, 25 rats were randomly divided into five groups including (1) control (C), (2) MI, (3) MI+RT, (4) MI+grape seed, and (5) MI+RT+grape seed. MI was induced by subcutaneous injection of isoprenaline (85 mg/kg). Grape seed nanoparticles were daily administered at a dose of 150 mg/kg for 8 weeks, and RT was performed 5 days a week. Finally, data were analyzed using the one-way analysis of variance (ANOVA) and Tukey’s post hoc tests (P≤0.05). Results: MI models showed decreased expression of PGC-1α, PPARγ, and UCP-1 genes in cardiac tissue (P=0.001). However, RT combined with the use of grape seed nanoparticles had a significant effect on increasing the expression of PGC-1α (P=0.001), PPARγ (P=0.002), and UCP-1 (P=0.003) genes in the heart tissue of MI model mice. Conclusion: The consumption of grape seed nanoparticles along with RT has more effects on improving the expression of PGC-1α, PPARγ, and UCP-1 genes in MI than either alone. Therefore, the use of grape seed nanoparticles together with RT is recommended in case of MI.","PeriodicalId":318974,"journal":{"name":"Journal of Shahrekord University of Medical Sciences","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Shahrekord University of Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jsums.2022.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: The consumption of grape seed nanoparticles extract can control cardiovascular risk factors. Exercise plays a protective role against cardiovascular disease. Therefore, the aim of the present study was to investigate the effect of eight-week resistance training (RT) and the use of grape seed nanoparticles on mitochondrial biogenesis of heart tissue in myocardial infarction (MI) models. Methods: In this experimental study, 25 rats were randomly divided into five groups including (1) control (C), (2) MI, (3) MI+RT, (4) MI+grape seed, and (5) MI+RT+grape seed. MI was induced by subcutaneous injection of isoprenaline (85 mg/kg). Grape seed nanoparticles were daily administered at a dose of 150 mg/kg for 8 weeks, and RT was performed 5 days a week. Finally, data were analyzed using the one-way analysis of variance (ANOVA) and Tukey’s post hoc tests (P≤0.05). Results: MI models showed decreased expression of PGC-1α, PPARγ, and UCP-1 genes in cardiac tissue (P=0.001). However, RT combined with the use of grape seed nanoparticles had a significant effect on increasing the expression of PGC-1α (P=0.001), PPARγ (P=0.002), and UCP-1 (P=0.003) genes in the heart tissue of MI model mice. Conclusion: The consumption of grape seed nanoparticles along with RT has more effects on improving the expression of PGC-1α, PPARγ, and UCP-1 genes in MI than either alone. Therefore, the use of grape seed nanoparticles together with RT is recommended in case of MI.