{"title":"Smart Community Wireless Platforms: Costs, Benefits, Drawbacks, Risks","authors":"Sakir Yucel","doi":"10.5772/INTECHOPEN.73838","DOIUrl":null,"url":null,"abstract":"A wireless network covering most of the city is a key component of a smart city. Although the wireless network offers many benefits, a key issue is the costs associated with laying out the infrastructure and services, making the bandwidth available and maintaining the services. We believe community involvement is important in building city-wide wireless networks. Indeed, many community wireless networks have been successful. Could the city inspire and assist the communities with building their wireless networks, and then unite them for a city-wide wireless network? We address the first question by presenting a model where municipality, communities and smart utility providers work together to create a platform, smart community wireless platform, for a community where platform sides work together toward achieving smart community objectives. One challenge is to estimate the total cost, benefits and drawbacks of such platforms. Another challenge is to model risks and mitigation plans for their success. We examine relevant dynamics in measuring the total cost, benefits, drawbacks and risks of smart community wireless platforms and develop models for estimating their success under various scenarios. To develop models, we use an intelligence framework that incorporates systems dynamics modelling with statistical, economical and machine learning methods. plans, drawbacks, policies and strategies, success criteria for each service area. For this characterization, the size of the service area matters. The resources such as social and non-profit organizations and businesses in the area matter. Opportunities such as economic development opportunities in the service area matter. How the municipality sees the service area matters with respect to whether municipality considers significant investment or not in the area, and what social initiatives and public services are planned. Existence of substitutable offerings matters. drawbacks, risks, policies, strategies and criteria of success for a specific service area in a community. The same that we estimating for estimating the under various conditions and scenarios. In we developed a generic SD model for estimating the benefits and drawbacks, and for incor-porating the causal loops among benefits, drawbacks, risks and mitigation plans in existence of network externalities. We outlined how the generic model could be instantiated for specific dynamics and to analyze different scenarios.","PeriodicalId":404805,"journal":{"name":"Recent Trends in Computational Science and Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.73838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A wireless network covering most of the city is a key component of a smart city. Although the wireless network offers many benefits, a key issue is the costs associated with laying out the infrastructure and services, making the bandwidth available and maintaining the services. We believe community involvement is important in building city-wide wireless networks. Indeed, many community wireless networks have been successful. Could the city inspire and assist the communities with building their wireless networks, and then unite them for a city-wide wireless network? We address the first question by presenting a model where municipality, communities and smart utility providers work together to create a platform, smart community wireless platform, for a community where platform sides work together toward achieving smart community objectives. One challenge is to estimate the total cost, benefits and drawbacks of such platforms. Another challenge is to model risks and mitigation plans for their success. We examine relevant dynamics in measuring the total cost, benefits, drawbacks and risks of smart community wireless platforms and develop models for estimating their success under various scenarios. To develop models, we use an intelligence framework that incorporates systems dynamics modelling with statistical, economical and machine learning methods. plans, drawbacks, policies and strategies, success criteria for each service area. For this characterization, the size of the service area matters. The resources such as social and non-profit organizations and businesses in the area matter. Opportunities such as economic development opportunities in the service area matter. How the municipality sees the service area matters with respect to whether municipality considers significant investment or not in the area, and what social initiatives and public services are planned. Existence of substitutable offerings matters. drawbacks, risks, policies, strategies and criteria of success for a specific service area in a community. The same that we estimating for estimating the under various conditions and scenarios. In we developed a generic SD model for estimating the benefits and drawbacks, and for incor-porating the causal loops among benefits, drawbacks, risks and mitigation plans in existence of network externalities. We outlined how the generic model could be instantiated for specific dynamics and to analyze different scenarios.