GAs for fuzzy modeling of noise pollution

R. Caponetto, M. Lavorgna, A. Martinez, L. Occhipinti
{"title":"GAs for fuzzy modeling of noise pollution","authors":"R. Caponetto, M. Lavorgna, A. Martinez, L. Occhipinti","doi":"10.1109/KES.1997.616911","DOIUrl":null,"url":null,"abstract":"A growing problem in town areas is noise pollution due to the increasing number of vehicles that daily cross cities. A classical approach to model this kind of system is based on numerical regression, but its performance is not satisfactory due to the nonlinearity of the considered model. A suitable approach can be therefore to determine a fuzzy model of the system. There has been a considerable number of studies on fuzzy identification, where fuzzy implications are used to express rules, in this paper the Tagaki-Sugeno approach has been adopted applying a genetic algorithm during the optimization phase. The obtained models are compared with traditional ones showing the suitability of the proposed method.","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.616911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A growing problem in town areas is noise pollution due to the increasing number of vehicles that daily cross cities. A classical approach to model this kind of system is based on numerical regression, but its performance is not satisfactory due to the nonlinearity of the considered model. A suitable approach can be therefore to determine a fuzzy model of the system. There has been a considerable number of studies on fuzzy identification, where fuzzy implications are used to express rules, in this paper the Tagaki-Sugeno approach has been adopted applying a genetic algorithm during the optimization phase. The obtained models are compared with traditional ones showing the suitability of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体噪声污染的模糊建模
城市中日益严重的问题是噪音污染,这是由于每天穿越城市的车辆越来越多造成的。对这类系统建模的经典方法是基于数值回归,但由于所考虑的模型的非线性,其性能并不令人满意。因此,可以采用一种合适的方法来确定系统的模糊模型。在模糊辨识方面已有相当多的研究,利用模糊含义来表达规则,本文采用Tagaki-Sugeno方法,在优化阶段采用遗传算法。将所得到的模型与传统模型进行了比较,验证了所提方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy control system applied to pump start in a petroleum plant Classification of symbolic data using fuzzy set theory Fuzzy agents for reactive navigation of a mobile robot Fuzzy neural network for fuzzy modeling and control Efficient fuzzy modeling and evaluation criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1