Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach

AVEC '14 Pub Date : 2014-11-07 DOI:10.1145/2661806.2661816
M. Sidorov, W. Minker
{"title":"Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach","authors":"M. Sidorov, W. Minker","doi":"10.1145/2661806.2661816","DOIUrl":null,"url":null,"abstract":"There is an enormous number of potential applications of the system which is capable to recognize human emotions. Such opportunity can be useful in various applications, e.g., improvement of Spoken Dialogue Systems (SDSs) or monitoring agents in call-centers. Depression is another aspect of human beings which is closely related to emotions. The system, that can automatically diagnose patient's depression can be helpful to physicians in order to support their decisions and avoid critical mistakes. Therefore, the Affect and Depression Recognition Sub-Challenges (ASC and DSC correspondingly) of the second combined open Audio/Visual Emotion and Depression recognition Challenge (AVEC 2014) is focused on estimating emotions and depression. This study presents the results of multimodal affect and depression recognition based on four different segmentation methods, using support vector regression. Furthermore, a speaker identification procedure has been introduced in order to build the speaker-specific emotion/depression recognition systems.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

There is an enormous number of potential applications of the system which is capable to recognize human emotions. Such opportunity can be useful in various applications, e.g., improvement of Spoken Dialogue Systems (SDSs) or monitoring agents in call-centers. Depression is another aspect of human beings which is closely related to emotions. The system, that can automatically diagnose patient's depression can be helpful to physicians in order to support their decisions and avoid critical mistakes. Therefore, the Affect and Depression Recognition Sub-Challenges (ASC and DSC correspondingly) of the second combined open Audio/Visual Emotion and Depression recognition Challenge (AVEC 2014) is focused on estimating emotions and depression. This study presents the results of multimodal affect and depression recognition based on four different segmentation methods, using support vector regression. Furthermore, a speaker identification procedure has been introduced in order to build the speaker-specific emotion/depression recognition systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情绪识别和抑郁症诊断的声学和视觉特征:一个多模态方法
这个能够识别人类情感的系统有很多潜在的应用。这种机会在各种应用中都是有用的,例如,改进口语对话系统(SDSs)或监测呼叫中心的座席。抑郁是人类与情绪密切相关的另一个方面。该系统可以自动诊断患者的抑郁症,可以帮助医生支持他们的决定,避免严重的错误。因此,第二次开放式视听情感与抑郁识别挑战(AVEC 2014)的情感与抑郁识别子挑战(ASC和DSC)侧重于对情绪和抑郁的估计。本文研究了基于四种不同分割方法的多模态情感和抑郁识别结果,并利用支持向量回归进行了分析。此外,本文还介绍了一个说话人识别程序,以建立说话人特定的情绪/抑郁识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions Automatic Depression Scale Prediction using Facial Expression Dynamics and Regression Depression Estimation Using Audiovisual Features and Fisher Vector Encoding The SRI AVEC-2014 Evaluation System Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1