{"title":"A novel CNN model with dense connectivity and attention mechanism for arrhythmia classification","authors":"Qin Zhan, Peilin Li, Yongle Wu, Jingchun Huang, Xunde Dong","doi":"10.1109/CBMS55023.2022.00016","DOIUrl":null,"url":null,"abstract":"Cardiac arrhythmia is a common cardiovascular disease that can cause sudden death in severe cases. Electro-cardiography (ECG) is the most well-known and widely applied method for heart diseases detection. Computer-aided diagnosis of ECG can help improve physician efficiency and reduce the rate of misdiagnosis of ECG. In this paper, we propose a method for arrhythmia classification based on the dense convolutional network (DenseNet) and efficient channel attention (ECA). Evaluation experiments were performed using the ECG records from the MIT-BIH database. The accuracy, sensitivity, specificity, and F1 values of 99.69%, 97.55%, 99.81%, and 97.72% were achieved for the six types of heartbeats classification, respectively. The experimental results demonstrate the validity and feasibility of the method, which can be used for ECG screening.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Cardiac arrhythmia is a common cardiovascular disease that can cause sudden death in severe cases. Electro-cardiography (ECG) is the most well-known and widely applied method for heart diseases detection. Computer-aided diagnosis of ECG can help improve physician efficiency and reduce the rate of misdiagnosis of ECG. In this paper, we propose a method for arrhythmia classification based on the dense convolutional network (DenseNet) and efficient channel attention (ECA). Evaluation experiments were performed using the ECG records from the MIT-BIH database. The accuracy, sensitivity, specificity, and F1 values of 99.69%, 97.55%, 99.81%, and 97.72% were achieved for the six types of heartbeats classification, respectively. The experimental results demonstrate the validity and feasibility of the method, which can be used for ECG screening.