Combining stochastic average gradient and Hessian-free optimization for sequence training of deep neural networks

Pierre L. Dognin, V. Goel
{"title":"Combining stochastic average gradient and Hessian-free optimization for sequence training of deep neural networks","authors":"Pierre L. Dognin, V. Goel","doi":"10.1109/ASRU.2013.6707750","DOIUrl":null,"url":null,"abstract":"Minimum phone error (MPE) training of deep neural networks (DNN) is an effective technique for reducing word error rate of automatic speech recognition tasks. This training is often carried out using a Hessian-free (HF) quasi-Newton approach, although other methods such as stochastic gradient descent have also been applied successfully. In this paper we present a novel stochastic approach to HF sequence training inspired by recently proposed stochastic average gradient (SAG) method. SAG reuses gradient information from past updates, and consequently simulates the presence of more training data than is really observed for each model update. We extend SAG by dynamically weighting the contribution of previous gradients, and by combining it to a stochastic HF optimization. We term the resulting procedure DSAG-HF. Experimental results for training DNNs on 1500h of audio data show that compared to baseline HF training, DSAG-HF leads to better held-out MPE loss after each model parameter update, and converges to an overall better loss value. Furthermore, since each update in DSAG-HF takes place over smaller amount of data, this procedure converges in about half the time as baseline HF sequence training.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Minimum phone error (MPE) training of deep neural networks (DNN) is an effective technique for reducing word error rate of automatic speech recognition tasks. This training is often carried out using a Hessian-free (HF) quasi-Newton approach, although other methods such as stochastic gradient descent have also been applied successfully. In this paper we present a novel stochastic approach to HF sequence training inspired by recently proposed stochastic average gradient (SAG) method. SAG reuses gradient information from past updates, and consequently simulates the presence of more training data than is really observed for each model update. We extend SAG by dynamically weighting the contribution of previous gradients, and by combining it to a stochastic HF optimization. We term the resulting procedure DSAG-HF. Experimental results for training DNNs on 1500h of audio data show that compared to baseline HF training, DSAG-HF leads to better held-out MPE loss after each model parameter update, and converges to an overall better loss value. Furthermore, since each update in DSAG-HF takes place over smaller amount of data, this procedure converges in about half the time as baseline HF sequence training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合随机平均梯度和无hessian优化的深度神经网络序列训练
深度神经网络(DNN)的最小电话错误(MPE)训练是降低自动语音识别任务中单词错误率的有效技术。这种训练通常使用无hessian (HF)准牛顿方法进行,尽管其他方法如随机梯度下降也已成功应用。本文在随机平均梯度法的启发下,提出了一种新的高频序列随机训练方法。SAG重用来自过去更新的梯度信息,因此模拟出比每次模型更新实际观察到的更多的训练数据。我们通过动态加权之前梯度的贡献来扩展SAG,并将其结合到随机HF优化中。我们将结果过程命名为DSAG-HF。在1500h音频数据上训练dnn的实验结果表明,与基线HF训练相比,每次更新模型参数后,DSAG-HF的持有MPE损失更好,并且收敛到一个更好的整体损失值。此外,由于DSAG-HF的每次更新都是在较小的数据量上进行的,因此该过程的收敛时间约为基线HF序列训练的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning filter banks within a deep neural network framework Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes Porting concepts from DNNs back to GMMs Discriminative piecewise linear transformation based on deep learning for noise robust automatic speech recognition Acoustic modeling using transform-based phone-cluster adaptive training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1