Simulation of multilateration system based on Chan algorithm and conjugate gradient optimisation algorithm

Jianhua Zhang, Feng Gao, Y. Li, Xueli Wu
{"title":"Simulation of multilateration system based on Chan algorithm and conjugate gradient optimisation algorithm","authors":"Jianhua Zhang, Feng Gao, Y. Li, Xueli Wu","doi":"10.1504/ijspm.2019.10025770","DOIUrl":null,"url":null,"abstract":"In multilateration (MLAT) systems, the traditional Chan algorithm applies the theory of time-difference-of-arrival (TDOA) to solve the target position of the mathematical model. By introducing intermediate variables, the algorithm adopts a two-step weighted least-squares solution. The introduction of intermediate variables results in the target position equation producing a fuzzy solution, this reduces positioning accuracy. The conjugate gradient algorithm (CGA) is one of the most useful methods for solving large linear equations, it avoids solving the inverse of the matrix, whilst it 'speeds up' the solution of the target position. A four stations multi-point-positioning system mathematical model is established, and a new fusion algorithm Chan-CGA is applied to the MLAT system. Finally, the fusion algorithm is evaluated by simulation and compared with the Chan-Taylor algorithm.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijspm.2019.10025770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In multilateration (MLAT) systems, the traditional Chan algorithm applies the theory of time-difference-of-arrival (TDOA) to solve the target position of the mathematical model. By introducing intermediate variables, the algorithm adopts a two-step weighted least-squares solution. The introduction of intermediate variables results in the target position equation producing a fuzzy solution, this reduces positioning accuracy. The conjugate gradient algorithm (CGA) is one of the most useful methods for solving large linear equations, it avoids solving the inverse of the matrix, whilst it 'speeds up' the solution of the target position. A four stations multi-point-positioning system mathematical model is established, and a new fusion algorithm Chan-CGA is applied to the MLAT system. Finally, the fusion algorithm is evaluated by simulation and compared with the Chan-Taylor algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Chan算法和共轭梯度优化算法的multieration系统仿真
在multieration (MLAT)系统中,传统的Chan算法利用到达时间差(TDOA)理论求解数学模型的目标位置。该算法通过引入中间变量,采用两步加权最小二乘求解。中间变量的引入导致目标位置方程产生模糊解,降低了定位精度。共轭梯度算法(CGA)是求解大型线性方程最有用的方法之一,它避免了求解矩阵的逆,同时“加速”了目标位置的求解。建立了四站多点定位系统的数学模型,并将一种新的融合算法Chan-CGA应用于MLAT系统。最后,通过仿真对融合算法进行了评价,并与Chan-Taylor算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic jam prediction using hazardous material transportation management simulation Evaluating the impact of shared situational awareness on combat effectiveness in symmetric engagements Realistic scenario modelling for building power supply and distribution system based on non-intrusive load monitoring Acoustic performance and modal analysis for the muffler of a four-stroke three-cylinder inline spark ignition engine Utilising scenario-based simulation modelling to optimise aircraft inspection scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1