Safety Helmet Detection in Industrial Environment using Deep Learning

Ankit Kamboj, Nilesh U. Powar
{"title":"Safety Helmet Detection in Industrial Environment using Deep Learning","authors":"Ankit Kamboj, Nilesh U. Powar","doi":"10.5121/csit.2020.100518","DOIUrl":null,"url":null,"abstract":"Safety is of predominant value for employees who are working in an industrial and construction environment. Real time Object detection is an important technique to detect violations of safety compliance in an industrial setup. The negligence in wearing safety helmets could be hazardous to workers, hence the requirement of the automatic surveillance system to detect persons not wearing helmets is of utmost importance and this would reduce the labor-intensive work to monitor the violations. In this paper, we deployed an advanced Convolutional Neural Network (CNN) algorithm called Single Shot Multibox Detector (SSD) to monitor violations of safety helmets. Various image processing techniques are applied to all the video data collected from the industrial plant. The practical and novel safety detection framework is proposed in which the CNN first detects persons from the video data and in the second step it detects whether the person is wearing the safety helmet. Using the proposed model, the deep learning inference benchmarking is done with Dell Advanced Tower workstation. The comparative study of the proposed approach is analysed in terms of detection accuracy (average precision) which illustrates the effectiveness of the proposed framework.","PeriodicalId":201467,"journal":{"name":"9th International Conference on Information Technology Convergence and Services (ITCSE 2020)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Information Technology Convergence and Services (ITCSE 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.100518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Safety is of predominant value for employees who are working in an industrial and construction environment. Real time Object detection is an important technique to detect violations of safety compliance in an industrial setup. The negligence in wearing safety helmets could be hazardous to workers, hence the requirement of the automatic surveillance system to detect persons not wearing helmets is of utmost importance and this would reduce the labor-intensive work to monitor the violations. In this paper, we deployed an advanced Convolutional Neural Network (CNN) algorithm called Single Shot Multibox Detector (SSD) to monitor violations of safety helmets. Various image processing techniques are applied to all the video data collected from the industrial plant. The practical and novel safety detection framework is proposed in which the CNN first detects persons from the video data and in the second step it detects whether the person is wearing the safety helmet. Using the proposed model, the deep learning inference benchmarking is done with Dell Advanced Tower workstation. The comparative study of the proposed approach is analysed in terms of detection accuracy (average precision) which illustrates the effectiveness of the proposed framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的工业环境安全帽检测
对于在工业和建筑环境中工作的员工来说,安全是最重要的。实时目标检测是检测工业环境中违反安全法规的一项重要技术。不戴安全帽可能对工人造成危险,因此要求自动监控系统检测未戴安全帽的人员是至关重要的,这将减少监测违规行为的劳动密集型工作。在本文中,我们部署了一种称为Single Shot Multibox Detector (SSD)的高级卷积神经网络(CNN)算法来监测违反安全帽的行为。各种图像处理技术应用于从工业厂房收集的所有视频数据。提出了一种实用新颖的安全检测框架,该框架首先利用CNN从视频数据中检测人,然后再检测人是否戴着安全帽。利用所提出的模型,在Dell Advanced Tower工作站上进行了深度学习推理基准测试。在检测精度(平均精度)方面对所提出的方法进行了比较研究,说明了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Bit Allocation Algorithm in Multi-view Video Advanced Rate Control Technologies for MVC Safety Helmet Detection in Industrial Environment using Deep Learning Use of an IoT Technology to Analyse the Inertial Measurement of Smart Ping-pong Paddle An Automatic Detection of Fundamental Postures in Vietnamese Traditional Dances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1