Data selection for speech recognition

Yi Wu, Rong Zhang, Alexander I. Rudnicky
{"title":"Data selection for speech recognition","authors":"Yi Wu, Rong Zhang, Alexander I. Rudnicky","doi":"10.1109/ASRU.2007.4430173","DOIUrl":null,"url":null,"abstract":"This paper presents a strategy for efficiently selecting informative data from large corpora of transcribed speech. We propose to choose data uniformly according to the distribution of some target speech unit (phoneme, word, character, etc). In our experiment, in contrast to the common belief that \"there is no data like more data\", we found it possible to select a highly informative subset of data that produces recognition performance comparable to a system that makes use of a much larger amount of data. At the same time, our selection process is efficient and fast.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

This paper presents a strategy for efficiently selecting informative data from large corpora of transcribed speech. We propose to choose data uniformly according to the distribution of some target speech unit (phoneme, word, character, etc). In our experiment, in contrast to the common belief that "there is no data like more data", we found it possible to select a highly informative subset of data that produces recognition performance comparable to a system that makes use of a much larger amount of data. At the same time, our selection process is efficient and fast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音识别的数据选择
本文提出了一种从大型语音转录语料库中高效选择信息数据的策略。我们建议根据目标语音单位(音素、词、字等)的分布统一选择数据。在我们的实验中,与“没有数据像更多的数据”的普遍信念相反,我们发现有可能选择一个高信息量的数据子集,产生与使用大量数据的系统相当的识别性能。同时,我们的选择过程是高效和快速的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1