Guided Cost Learning for Lunar Lander Environment Using Human Demonstrated Expert Trajectories

Deepak S. Dharrao, S. Gite, Rahee Walambe
{"title":"Guided Cost Learning for Lunar Lander Environment Using Human Demonstrated Expert Trajectories","authors":"Deepak S. Dharrao, S. Gite, Rahee Walambe","doi":"10.1109/AICAPS57044.2023.10074283","DOIUrl":null,"url":null,"abstract":"Inverse Reinforcement Learning is a subset of Imitation learning, where the goal is to generate a reward function that captures an expert’s behavior using a set of demonstrations by the expert. Guided Cost Learning (GCL) is a recent approach to finding a neural network reward function. In this paper the GCL algorithm is explored and applied to the Lunar Lander environment of the OpenAI gym. We generated our own set of expert demonstrations and implemented the GCL algorithm. We successfully demonstrate that Guided Cost Learning can generate a reward that completely encapsulates desired behavior depicted in the expert demonstrations, even for high dimensional state space environments such as the lunar lander environment. Reward and policy evaluations between the actual reward function and the GCL generated rewards function are compared and the results are presented.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse Reinforcement Learning is a subset of Imitation learning, where the goal is to generate a reward function that captures an expert’s behavior using a set of demonstrations by the expert. Guided Cost Learning (GCL) is a recent approach to finding a neural network reward function. In this paper the GCL algorithm is explored and applied to the Lunar Lander environment of the OpenAI gym. We generated our own set of expert demonstrations and implemented the GCL algorithm. We successfully demonstrate that Guided Cost Learning can generate a reward that completely encapsulates desired behavior depicted in the expert demonstrations, even for high dimensional state space environments such as the lunar lander environment. Reward and policy evaluations between the actual reward function and the GCL generated rewards function are compared and the results are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人类专家轨迹的月球着陆器环境导引成本学习
逆强化学习是模仿学习的一个子集,其目标是生成一个奖励函数,该函数通过专家的一组演示来捕获专家的行为。引导成本学习(GCL)是一种寻找神经网络奖励函数的新方法。本文对GCL算法进行了探索,并将其应用到OpenAI gym的月球着陆器环境中。我们生成了自己的一组专家演示,并实现了GCL算法。我们成功地证明了引导成本学习可以产生完全封装专家演示中描述的期望行为的奖励,甚至对于高维状态空间环境(如月球着陆器环境)也是如此。将实际奖励函数与协鑫生成的奖励函数之间的奖励和政策评估进行比较,并给出结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Irrigation Management System for Precision Agriculture Impact of Stain Normalisation Technique on Deep Learning based Nuclei Segmentation in Histopathological Image An Optimal Differential Evolution Based XGB Classifier for IoMT malware classification Sarcasm Detection followed by Sentiment Analysis for Bengali Language: Neural Network & Supervised Approach Feature Selection using Enhanced Nature Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1