{"title":"Machine Learning Applied to the Clerical Task Management Problem in Master Data Management Systems","authors":"M. Oberhofer, L. Bremer, Mariya Chkalova","doi":"10.18420/btw2019-25","DOIUrl":null,"url":null,"abstract":"Clerical tasks are created if a duplicate detection algorithm detects some similarity of records but not enough to allow an auto-merge operation. Data stewards review clerical tasks and make a final non-match or match decision. In this paper we evaluate different machine learning algorithms regarding their accuracy to predict the correct action for a clerical task and execute that action automatically if the prediction has sufficient confidence. This approach reduces the amount of work for data stewards by factors of magnitude.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbanksysteme für Business, Technologie und Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/btw2019-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Clerical tasks are created if a duplicate detection algorithm detects some similarity of records but not enough to allow an auto-merge operation. Data stewards review clerical tasks and make a final non-match or match decision. In this paper we evaluate different machine learning algorithms regarding their accuracy to predict the correct action for a clerical task and execute that action automatically if the prediction has sufficient confidence. This approach reduces the amount of work for data stewards by factors of magnitude.