SportsTables: A new Corpus for Semantic Type Detection

S. Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig
{"title":"SportsTables: A new Corpus for Semantic Type Detection","authors":"S. Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig","doi":"10.18420/BTW2023-68","DOIUrl":null,"url":null,"abstract":"Table corpora such as VizNet or TURL which contain annotated semantic types per column are important to build machine learning models for the task of automatic semantic type detection. However, there is a huge discrepancy between corpora and real-world data lakes since they contain a huge fraction of numerical data which are not present in existing corpora. Hence, in this paper, we introduce a new corpus that contains a much higher proportion of numerical columns than existing corpora. To reflect the distribution in real-world data lakes, our corpus SportsTables has on average approx. 86% numerical columns, posing new challenges to existing semantic type detection models which have mainly targeted non-numerical columns so far. To demonstrate this effect, we show in this extended version paper of [18] the results of an extensive study using four different state-of-the-art approaches for semantic type detection on our new corpus. Overall, the results demonstrate significant performance differences in predicting semantic types for textual and numerical data.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbanksysteme für Business, Technologie und Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/BTW2023-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Table corpora such as VizNet or TURL which contain annotated semantic types per column are important to build machine learning models for the task of automatic semantic type detection. However, there is a huge discrepancy between corpora and real-world data lakes since they contain a huge fraction of numerical data which are not present in existing corpora. Hence, in this paper, we introduce a new corpus that contains a much higher proportion of numerical columns than existing corpora. To reflect the distribution in real-world data lakes, our corpus SportsTables has on average approx. 86% numerical columns, posing new challenges to existing semantic type detection models which have mainly targeted non-numerical columns so far. To demonstrate this effect, we show in this extended version paper of [18] the results of an extensive study using four different state-of-the-art approaches for semantic type detection on our new corpus. Overall, the results demonstrate significant performance differences in predicting semantic types for textual and numerical data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
sportstable:一个新的语义类型检测语料库
表语料库(如VizNet或TURL)每列包含注释的语义类型,对于构建用于自动语义类型检测任务的机器学习模型非常重要。然而,语料库与现实世界的数据湖之间存在巨大的差异,因为它们包含了大量现有语料库中不存在的数值数据。因此,在本文中,我们引入了一个新的语料库,它包含比现有语料库更高比例的数字列。为了反映真实世界数据湖中的分布,我们的语料库sportstabables平均约为。86%的数字列,对现有的主要针对非数字列的语义类型检测模型提出了新的挑战。为了证明这种效果,我们在[18]的这篇扩展版论文中展示了一项广泛研究的结果,该研究使用了四种不同的最先进的方法在我们的新语料库上进行语义类型检测。总体而言,结果表明在预测文本和数字数据的语义类型方面存在显著的性能差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SportsTables: A new Corpus for Semantic Type Detection Accelerating Large Table Scan using Processing-In-Memory Technology The InsightsNet Climate Change Corpus (ICCC) On the State of German (Abstractive) Text Summarization The Easiest Way of Turning your Relational Database into a Blockchain - and the Cost of Doing So
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1