Effect of adding small applications after verification experiment in a power electronics course

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Circuits Devices & Systems Pub Date : 2021-09-19 DOI:10.1049/cds2.12099
Guopeng Zhao
{"title":"Effect of adding small applications after verification experiment in a power electronics course","authors":"Guopeng Zhao","doi":"10.1049/cds2.12099","DOIUrl":null,"url":null,"abstract":"<p>In order to deepen the understanding of power electronics circuits, in this study, a teaching method of adding simple small applications of circuits on the basis of basic verification experiments is proposed. Teachers teach basic principles and applications of circuits, and students conduct basic verification experiments of circuits in the laboratory. Simple application experiments are added after the verification experiments. The full-bridge DC-DC converter circuit is taken as an example to carry out practical teaching. After completing the function of the full-bridge DC-DC converter circuit, a load of DC motor is used. The full-bridge DC-DC converter circuit is used to control the speed of the DC motor so as to realise the simple application of the full-bridge DC-DC converter circuit with a motor speed control function. By comparing the experimental realisation rate, the correct rate of thinking questions and the in-depth understanding of the application theory of two experimental classes, namely the class with simple applications and the class without simple applications, it is shown that the students with simple application experiments improved the correct rate of thinking questions and deepened their understanding of the applications. Compared with the situation in which most students in the class that did not conduct the application experiment did not know the application principle in detail, most students in the class that conducted the application experiment had a deep understanding of the applications. Through the questionnaire survey of students, it is observed that the method proposed in this study could deepen the understanding of circuits and the students had a simple and preliminary understanding of the applications of power electronics technology. It improved students' interest in the course and their practicing ability. The proposed teaching method had a good effect.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 3","pages":"218-227"},"PeriodicalIF":1.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12099","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12099","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

In order to deepen the understanding of power electronics circuits, in this study, a teaching method of adding simple small applications of circuits on the basis of basic verification experiments is proposed. Teachers teach basic principles and applications of circuits, and students conduct basic verification experiments of circuits in the laboratory. Simple application experiments are added after the verification experiments. The full-bridge DC-DC converter circuit is taken as an example to carry out practical teaching. After completing the function of the full-bridge DC-DC converter circuit, a load of DC motor is used. The full-bridge DC-DC converter circuit is used to control the speed of the DC motor so as to realise the simple application of the full-bridge DC-DC converter circuit with a motor speed control function. By comparing the experimental realisation rate, the correct rate of thinking questions and the in-depth understanding of the application theory of two experimental classes, namely the class with simple applications and the class without simple applications, it is shown that the students with simple application experiments improved the correct rate of thinking questions and deepened their understanding of the applications. Compared with the situation in which most students in the class that did not conduct the application experiment did not know the application principle in detail, most students in the class that conducted the application experiment had a deep understanding of the applications. Through the questionnaire survey of students, it is observed that the method proposed in this study could deepen the understanding of circuits and the students had a simple and preliminary understanding of the applications of power electronics technology. It improved students' interest in the course and their practicing ability. The proposed teaching method had a good effect.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电力电子学课程中加入验证实验后的小应用效果
为了加深对电力电子电路的理解,本研究提出了在基础验证实验的基础上增加简单小应用电路的教学方法。教师讲授电路的基本原理和应用,学生在实验室进行电路的基本验证实验。验证实验后,添加了简单的应用实验。以全桥DC-DC变换器电路为例进行实践教学。在完成全桥DC-DC转换电路的功能后,使用直流电机负载。采用全桥DC-DC变换器电路控制直流电机的转速,实现具有电机调速功能的全桥DC-DC变换器电路的简单应用。通过比较两个实验班即简单应用班和非简单应用班的实验实现率、思维问题正确率和对应用理论的深入理解情况,可以看出,进行简单应用实验的学生提高了思维问题的正确率,加深了对应用的理解。相比于没有进行应用实验的班级中大部分学生对应用原理不了解的情况,进行应用实验的班级中大部分学生对应用有较深入的了解。通过对学生的问卷调查发现,本研究提出的方法可以加深学生对电路的理解,使学生对电力电子技术的应用有了简单初步的认识。提高了学生对课程的兴趣和实践能力。提出的教学方法取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Circuits Devices & Systems
Iet Circuits Devices & Systems 工程技术-工程:电子与电气
CiteScore
3.80
自引率
7.70%
发文量
32
审稿时长
3 months
期刊介绍: IET Circuits, Devices & Systems covers the following topics: Circuit theory and design, circuit analysis and simulation, computer aided design Filters (analogue and switched capacitor) Circuit implementations, cells and architectures for integration including VLSI Testability, fault tolerant design, minimisation of circuits and CAD for VLSI Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs Device and process characterisation, device parameter extraction schemes Mathematics of circuits and systems theory Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers
期刊最新文献
A 2-GHz GaN HEMT Power Amplifier Harmonically Tuned Using a Compact One-Port CRLH Transmission Line An Efficient Approximate Multiplier with Encoded Partial Products and Inexact Counter for Joint Photographic Experts Group Compression Synthetic Aperture Interferometric Passive Radiometer Imaging to Locate Electromagnetic Leakage From Spacecraft Surface Simultaneous Optimal Allocation of EVCSs and RESs Using an Improved Genetic Method Intelligent Control of Surgical Robot for Telesurgery: An Application to Smart Healthcare Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1