Optimization of spatial arrangement of magnetic field sensors of closed loop system of overhead power lines magnetic field active silencing

B. Kuznetsov, T. Nikitina, I. Bovdui, O. Voloshko, V. Kolomiets, B. Kobylianskyi
{"title":"Optimization of spatial arrangement of magnetic field sensors of closed loop system of overhead power lines magnetic field active silencing","authors":"B. Kuznetsov, T. Nikitina, I. Bovdui, O. Voloshko, V. Kolomiets, B. Kobylianskyi","doi":"10.20998/2074-272x.2023.4.04","DOIUrl":null,"url":null,"abstract":"Aim. Development of a method for optimization of spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active silencing canceling of the magnetic field generated by overhead power lines. Methodology. Spatial arrangement and angular position of magnetic field sensors of closed loop system of overhead power lines magnetic field active silencing determined based on binary preference relations of local objective for multi-objective minimax optimization problem, in whith the vector objective function calculated based on Biot–Savart law. The solution of this vector minimax optimization problem calculated based on nonlinear Archimedes algorithm of multi-swarm multi-agent optimization. Results. Results of simulation and experimental research of optimal spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active silencing of the magnetic field generated by overhead power lines with a barrel-type arrangement of wires. Originality. The method for optimization of spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active shielding of the magnetic field generated by overhead power lines is developed. Practical value. An important practical problem optimization of spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active silencing of the magnetic field generated by overhead power lines has been solved.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering & Electromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2074-272x.2023.4.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim. Development of a method for optimization of spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active silencing canceling of the magnetic field generated by overhead power lines. Methodology. Spatial arrangement and angular position of magnetic field sensors of closed loop system of overhead power lines magnetic field active silencing determined based on binary preference relations of local objective for multi-objective minimax optimization problem, in whith the vector objective function calculated based on Biot–Savart law. The solution of this vector minimax optimization problem calculated based on nonlinear Archimedes algorithm of multi-swarm multi-agent optimization. Results. Results of simulation and experimental research of optimal spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active silencing of the magnetic field generated by overhead power lines with a barrel-type arrangement of wires. Originality. The method for optimization of spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active shielding of the magnetic field generated by overhead power lines is developed. Practical value. An important practical problem optimization of spatial arrangement and angular position of magnetic field sensors of a closed system to ensure maximum efficiency of active silencing of the magnetic field generated by overhead power lines has been solved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
架空线路磁场主动消声闭环系统磁场传感器空间布置优化
的目标。开发了一种封闭系统磁场传感器空间布局和角度位置的优化方法,以确保对架空线路产生的磁场进行最大效率的主动消声消除。方法。针对多目标极小极大优化问题,基于局部目标的二元偏好关系,利用基于Biot-Savart定律计算的矢量目标函数,确定了架空电网磁场主动消声闭环系统中磁场传感器的空间布置和角度位置。求解了基于非线性阿基米德算法的矢量极大极小优化问题的多群多智能体优化。结果。封闭系统磁场传感器最佳空间布置和角度位置的仿真与实验研究结果,以保证最大效率地主动消音桶式架空线路产生的磁场。创意。提出了封闭系统中磁场传感器空间布置和角度位置的优化方法,以保证对架空线路产生的磁场的有效屏蔽。实用价值。解决了封闭系统中磁场传感器空间布置和角度位置优化的重要实际问题,以最大限度地提高架空线路产生磁场的主动消声效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive controller for power quality control in high speed railway with electric locomotives with asynchronous traction motors Analytical method of determining conditions for full compensation of reactive power in the power supply system Maximum power point tracking improvement using type-2 fuzzy controller for wind system based on the double fed induction generator Calculation and experimental determination of the speed of advancement of the plasma leader channel of a pulse spark discharge in atmospheric air Smart current control of the wind energy conversion system based permanent magnet synchronous generator using predictive and hysteresis model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1