Distributed Word Representations Improve NER for e-Commerce

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1522
Mahesh Joshi, Ethan Hart, Mirko Vogel, Jean-David Ruvini
{"title":"Distributed Word Representations Improve NER for e-Commerce","authors":"Mahesh Joshi, Ethan Hart, Mirko Vogel, Jean-David Ruvini","doi":"10.3115/v1/W15-1522","DOIUrl":null,"url":null,"abstract":"This paper presents a case study of using distributed word representations, word2vec in particular, for improving performance of Named Entity Recognition for the eCommerce domain. We also demonstrate that distributed word representations trained on a smaller amount of in-domain data are more effective than word vectors trained on very large amount of out-of-domain data, and that their combination gives the best results.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper presents a case study of using distributed word representations, word2vec in particular, for improving performance of Named Entity Recognition for the eCommerce domain. We also demonstrate that distributed word representations trained on a smaller amount of in-domain data are more effective than word vectors trained on very large amount of out-of-domain data, and that their combination gives the best results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式词表示改进电子商务的NER
本文介绍了一个使用分布式词表示(特别是word2vec)来提高电子商务领域命名实体识别性能的案例研究。我们还证明了在少量域内数据上训练的分布式词表示比在大量域外数据上训练的词向量更有效,并且它们的组合给出了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributional Semantic Concept Models for Entity Relation Discovery Learning Distributed Representations for Multilingual Text Sequences Vector Space Models for Scientific Document Summarization A Deep Architecture for Non-Projective Dependency Parsing Dependency Link Embeddings: Continuous Representations of Syntactic Substructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1