PSA: A Performance and Space-Aware Data Layout Scheme for Hybrid Parallel File Systems

Shuibing He, Yan Liu, Xian-He Sun
{"title":"PSA: A Performance and Space-Aware Data Layout Scheme for Hybrid Parallel File Systems","authors":"Shuibing He, Yan Liu, Xian-He Sun","doi":"10.1109/DISCS.2014.10","DOIUrl":null,"url":null,"abstract":"The underlying storage of hybrid parallel file systems (PFS) is composed of both SSD-based file servers (SServer) and HDD-based file servers (HServer). Unlike a traditional HServer, an SServer consistently provides improved storage performance but lacks storage space. However, most current data layout schemes do not consider the differences in performance and space between heterogeneous servers, and may significantly degrade the performance of the hybrid PFSs. In this paper, we propose PSA, a novel data layout scheme, which maximizes the hybrid PFSs performance by applying adaptive varied-size file stripes. PSA dispatches data on heterogeneous file servers not only based on storage performance but also storage space. We have implemented PSA within OrangeFS, a popular parallel file system in the HPC domain. Our extensive experiments using a representative benchmark show that PSA provides superior I/O throughput than the default and performance-aware file data layout schemes.","PeriodicalId":278119,"journal":{"name":"2014 International Workshop on Data Intensive Scalable Computing Systems","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Data Intensive Scalable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCS.2014.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The underlying storage of hybrid parallel file systems (PFS) is composed of both SSD-based file servers (SServer) and HDD-based file servers (HServer). Unlike a traditional HServer, an SServer consistently provides improved storage performance but lacks storage space. However, most current data layout schemes do not consider the differences in performance and space between heterogeneous servers, and may significantly degrade the performance of the hybrid PFSs. In this paper, we propose PSA, a novel data layout scheme, which maximizes the hybrid PFSs performance by applying adaptive varied-size file stripes. PSA dispatches data on heterogeneous file servers not only based on storage performance but also storage space. We have implemented PSA within OrangeFS, a popular parallel file system in the HPC domain. Our extensive experiments using a representative benchmark show that PSA provides superior I/O throughput than the default and performance-aware file data layout schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合并行文件系统的性能和空间感知数据布局方案
混合并行文件系统(PFS)的底层存储由基于ssd的文件服务器(SServer)和基于hdd的文件服务器(HServer)组成。与传统的HServer不同,SServer的存储性能不断提高,但存储空间不足。然而,大多数当前的数据布局方案没有考虑异构服务器之间的性能和空间差异,这可能会显著降低混合pfs的性能。在本文中,我们提出了一种新的数据布局方案PSA,该方案通过应用自适应变大小文件条带来最大化混合pfs的性能。PSA在异构文件服务器上调度数据,不仅考虑存储性能,还考虑存储空间。我们已经在高性能计算领域中流行的并行文件系统OrangeFS中实现了PSA。我们使用具有代表性的基准进行了广泛的实验,结果表明PSA提供了比默认和性能敏感的文件数据布局方案更好的I/O吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CULZSS-Bit: A Bit-Vector Algorithm for Lossless Data Compression on GPGPUs Mapping of RAID Controller Performance Data to the Job History on Large Computing Systems PSA: A Performance and Space-Aware Data Layout Scheme for Hybrid Parallel File Systems A Caching Approach to Reduce Communication in Graph Search Algorithms Distributed Multipath Routing Algorithm for Data Center Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1