Municipal Solid Waste Segregation with CNN

C. Srinilta, Sivakorn Kanharattanachai
{"title":"Municipal Solid Waste Segregation with CNN","authors":"C. Srinilta, Sivakorn Kanharattanachai","doi":"10.1109/ICEAST.2019.8802522","DOIUrl":null,"url":null,"abstract":"Pollution from municipal solid waste has been a problem in Thailand for a long time. People generate waste in every minute. Ineffective waste segregation does increase difficulties in solid waste management. The Pollution Control Department of Thailand provides segregation guideline for municipal solid waste. Household wastes should be separated into four types—general waste, compostable waste, recyclable waste and hazardous waste. This paper explored performance of CNN-based waste-type classifiers (VGG-16, ResNet-50, MobileNet V2 and DenseNet-121) in classifying waste types of 9,200 municipal solid waste images. Waste type can be identified directly from waste-type classifier or derived from waste-item class. Derived classifiers outperformed their corresponding direct classifiers in the experiment. The highest waste-type classification accuracy was 94.86% from the derived ResNet-50 classifier.","PeriodicalId":188498,"journal":{"name":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2019.8802522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Pollution from municipal solid waste has been a problem in Thailand for a long time. People generate waste in every minute. Ineffective waste segregation does increase difficulties in solid waste management. The Pollution Control Department of Thailand provides segregation guideline for municipal solid waste. Household wastes should be separated into four types—general waste, compostable waste, recyclable waste and hazardous waste. This paper explored performance of CNN-based waste-type classifiers (VGG-16, ResNet-50, MobileNet V2 and DenseNet-121) in classifying waste types of 9,200 municipal solid waste images. Waste type can be identified directly from waste-type classifier or derived from waste-item class. Derived classifiers outperformed their corresponding direct classifiers in the experiment. The highest waste-type classification accuracy was 94.86% from the derived ResNet-50 classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN报道城市固体废物分类
长期以来,城市固体废物污染一直是泰国的一个问题。人们每分钟都会产生废物。无效的废物分类确实增加了固体废物管理的困难。泰国污染控制部提供了城市固体废物分类指南。生活垃圾应分为四类:一般垃圾、可堆肥垃圾、可回收垃圾和危险垃圾。本文研究了基于cnn的垃圾类型分类器(vgg16、ResNet-50、MobileNet V2和DenseNet-121)对9200张城市生活垃圾图像进行垃圾类型分类的性能。废物类型可以直接从废物类型分类器中确定,也可以从废物项目分类中派生。在实验中,衍生分类器的表现优于相应的直接分类器。衍生的ResNet-50分类器的垃圾分类准确率最高,为94.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal Verification of the Accounting Information Interfaces Using Colored Petri Net Multi-Channel Surface Electromyograph for Monitoring Intradialytic Cramp Narrowband-Internet of Things (NB-IoT) System for Elderly Healthcare Services Municipal Solid Waste Segregation with CNN Measuring Icon Recognization Mapping with Automated Decision Making System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1