Fault-tolerant environmental perception architecture for robust automated driving

Stephanie Grubmüller, G. Stettinger, M. Sotelo, D. Watzenig
{"title":"Fault-tolerant environmental perception architecture for robust automated driving","authors":"Stephanie Grubmüller, G. Stettinger, M. Sotelo, D. Watzenig","doi":"10.1109/ICCVE45908.2019.8965112","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles gain more and more attention. Moving towards highly automated vehicles requires the implementation of fault-tolerant systems. In this paper we propose an architecture for a fault-tolerant environmental perception, where either one fault in the hardware or one in the software can be detected. The hardware fault detection relies on a Landmark (LM) tracking approach. The software fault detection is based on comparing the outputs of redundant programs. The faulty module is then excluded in the data fusion algorithm by a fault masking. The functionality of the proposed approach is tested in simulation via injecting one hardware and one software fault.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"1 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8965112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Autonomous vehicles gain more and more attention. Moving towards highly automated vehicles requires the implementation of fault-tolerant systems. In this paper we propose an architecture for a fault-tolerant environmental perception, where either one fault in the hardware or one in the software can be detected. The hardware fault detection relies on a Landmark (LM) tracking approach. The software fault detection is based on comparing the outputs of redundant programs. The faulty module is then excluded in the data fusion algorithm by a fault masking. The functionality of the proposed approach is tested in simulation via injecting one hardware and one software fault.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒自动驾驶的容错环境感知体系结构
自动驾驶汽车越来越受到关注。向高度自动化车辆发展需要实施容错系统。在本文中,我们提出了一种容错环境感知体系结构,其中硬件或软件中的一个故障都可以被检测到。硬件故障检测依赖于Landmark (LM)跟踪方法。软件故障检测是基于比较冗余程序的输出。然后通过故障屏蔽将故障模块排除在数据融合算法中。通过注入一个硬件故障和一个软件故障,在仿真中测试了该方法的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Automotive Antennas for Cellular Radio Communications Online validity monitor for vehicle dynamics models Multi-actuated ground vehicle tyre force estimation through a coupled 1D simulation-estimation framework Evaluation of an indoor localization system for a mobile robot Applications and Trends in Connected Vehicles: Debates and Conclusions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1