Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach

Q1 Economics, Econometrics and Finance Intelligent Systems in Accounting, Finance and Management Pub Date : 2021-03-11 DOI:10.1002/isaf.1489
Sauraj Verma
{"title":"Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach","authors":"Sauraj Verma","doi":"10.1002/isaf.1489","DOIUrl":null,"url":null,"abstract":"<p>Volatility is an important element for various financial instruments owing to its ability to measure the risk and reward value of a given financial asset. Owing to its importance, forecasting volatility has become a critical task in financial forecasting. In this paper, we propose a suite of hybrid models for forecasting volatility of crude oil under different forecasting horizons. Specifically, we combine the parameters of generalized autoregressive conditional heteroscedasticity (GARCH) and Glosten–Jagannathan–Runkle (GJR)-GARCH with long short-term memory (LSTM) to create three new forecasting models named GARCH–LSTM, GJR-LSTM, and GARCH-GJRGARCH LSTM in order to forecast crude oil volatility of West Texas Intermediate on different forecasting horizons and compare their performance with the classical volatility forecasting models. Specifically, we compare the performances against existing methodologies of forecasting volatility such as GARCH and found that the proposed hybrid models improve upon the forecasting accuracy of Crude Oil: West Texas Intermediate under various forecasting horizons and perform better than GARCH and GJR-GARCH, with GG–LSTM performing the best of the three proposed models at 7-, 14-, and 21-day-ahead forecasts in terms of heteroscedasticity-adjusted mean square error and heteroscedasticity-adjusted mean absolute error, with significance testing conducted through the model confidence set showing that GG–LSTM is a strong contender for forecasting crude oil volatility under different forecasting regimes and rolling-window schemes. The contribution of the paper is that it enhances the forecasting ability of crude oil futures volatility, which is essential for trading, hedging, and purposes of arbitrage, and that the proposed model dwells upon existing literature and enhances the forecasting accuracy of crude oil volatility by fusing a neural network model with multiple econometric models.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"28 2","pages":"130-142"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1489","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 16

Abstract

Volatility is an important element for various financial instruments owing to its ability to measure the risk and reward value of a given financial asset. Owing to its importance, forecasting volatility has become a critical task in financial forecasting. In this paper, we propose a suite of hybrid models for forecasting volatility of crude oil under different forecasting horizons. Specifically, we combine the parameters of generalized autoregressive conditional heteroscedasticity (GARCH) and Glosten–Jagannathan–Runkle (GJR)-GARCH with long short-term memory (LSTM) to create three new forecasting models named GARCH–LSTM, GJR-LSTM, and GARCH-GJRGARCH LSTM in order to forecast crude oil volatility of West Texas Intermediate on different forecasting horizons and compare their performance with the classical volatility forecasting models. Specifically, we compare the performances against existing methodologies of forecasting volatility such as GARCH and found that the proposed hybrid models improve upon the forecasting accuracy of Crude Oil: West Texas Intermediate under various forecasting horizons and perform better than GARCH and GJR-GARCH, with GG–LSTM performing the best of the three proposed models at 7-, 14-, and 21-day-ahead forecasts in terms of heteroscedasticity-adjusted mean square error and heteroscedasticity-adjusted mean absolute error, with significance testing conducted through the model confidence set showing that GG–LSTM is a strong contender for forecasting crude oil volatility under different forecasting regimes and rolling-window schemes. The contribution of the paper is that it enhances the forecasting ability of crude oil futures volatility, which is essential for trading, hedging, and purposes of arbitrage, and that the proposed model dwells upon existing literature and enhances the forecasting accuracy of crude oil volatility by fusing a neural network model with multiple econometric models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GARCH-RNN混合方法预测原油期货波动率
波动率是各种金融工具的重要因素,因为它能够衡量给定金融资产的风险和回报价值。由于波动性预测的重要性,它已成为财务预测中的一项关键任务。本文提出了一套混合预测模型,用于不同预测范围下原油波动率的预测。具体而言,我们将广义自回归条件异方差(GARCH)和glosten - jagannahan - runkle (GJR)-GARCH与长短期记忆(LSTM)相结合,建立了GARCH- LSTM、GJR-LSTM和GARCH- gjrgarch LSTM三个新的预测模型,在不同的预测水平上预测西德克萨斯中质原油的波动率,并与经典波动率预测模型进行了比较。具体而言,我们将其与GARCH等现有预测波动率的方法进行了比较,发现所提出的混合模型提高了原油的预测精度:西德克萨斯中质油在不同预测水平下的表现优于GARCH和GJR-GARCH,其中GG-LSTM模型在7天、14天和21天预报时的异方差调整均方误差和异方差调整平均绝对误差表现最好。通过模型置信度集进行的显著性检验表明,GG-LSTM在不同预测制度和滚动窗口方案下预测原油波动率是一个强有力的竞争者。本文的贡献在于提高了原油期货波动率的预测能力,这对于交易、套期保值和套利是必不可少的,并且所提出的模型借鉴了现有文献,通过将神经网络模型与多个计量模型融合,提高了原油波动率的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
期刊最新文献
The Technological Innovation of the Metaverse in Financial Sector: Current State, Opportunities, and Open Challenges Issue Information Liquidity forecasting at corporate and subsidiary levels using machine learning Identification of fraudulent financial statements through a multi-label classification approach Predicting carbon and oil price returns using hybrid models based on machine and deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1