ASYMPTOTIC EFFICIENCY OF ESTIMATING FUNCTION ESTIMATORS FOR NONLINEAR TIME SERIES MODELS

Tomoyuki Amano
{"title":"ASYMPTOTIC EFFICIENCY OF ESTIMATING FUNCTION ESTIMATORS FOR NONLINEAR TIME SERIES MODELS","authors":"Tomoyuki Amano","doi":"10.14490/JJSS.39.209","DOIUrl":null,"url":null,"abstract":"The conditional least squares (CLS) estimator proposed by Tjostheim (1986) is convenient and important for nonlinear time series models. However this convenient estimator is not generally asymptotically efficient. Hence Chandra and Taniguchi (2001) proposed a G estimator based on Godambe’s asymptotically optimal estimating function. For important nonlinear time series models, e.g., RCA, GARCH, nonlinear AR models, we show the asymptotic variance of the G estimator is smaller than that of the CLS estimator, and the G estimator is asymptotically efficient if the innovation is Gaussian. Numerical studies for the comparison of the asymptotic variance of the G estimator, that of the CLS estimator and the Fisher information are also given. They elucidate some interesting features of the G estimator.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"449 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.39.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The conditional least squares (CLS) estimator proposed by Tjostheim (1986) is convenient and important for nonlinear time series models. However this convenient estimator is not generally asymptotically efficient. Hence Chandra and Taniguchi (2001) proposed a G estimator based on Godambe’s asymptotically optimal estimating function. For important nonlinear time series models, e.g., RCA, GARCH, nonlinear AR models, we show the asymptotic variance of the G estimator is smaller than that of the CLS estimator, and the G estimator is asymptotically efficient if the innovation is Gaussian. Numerical studies for the comparison of the asymptotic variance of the G estimator, that of the CLS estimator and the Fisher information are also given. They elucidate some interesting features of the G estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性时间序列模型估计函数估计量的渐近效率
Tjostheim(1986)提出的条件最小二乘(CLS)估计对于非线性时间序列模型是一种方便而重要的估计。然而,这种方便的估计量通常不是渐近有效的。因此,Chandra和Taniguchi(2001)提出了基于Godambe渐近最优估计函数的G估计量。对于重要的非线性时间序列模型,如RCA, GARCH,非线性AR模型,我们证明了G估计量的渐近方差小于CLS估计量的渐近方差,并且如果创新是高斯的,G估计量是渐近有效的。本文还给出了G估计量、CLS估计量和Fisher信息渐近方差比较的数值研究。它们阐明了G估计量的一些有趣的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1