Fake Image Detection Using An Ensemble of CNN Models Specialized For Individual Face Parts

Akihisa Kawabe, Ryuto Haga, Yoichi Tomioka, Y. Okuyama, Jungpil Shin
{"title":"Fake Image Detection Using An Ensemble of CNN Models Specialized For Individual Face Parts","authors":"Akihisa Kawabe, Ryuto Haga, Yoichi Tomioka, Y. Okuyama, Jungpil Shin","doi":"10.1109/MCSoC57363.2022.00021","DOIUrl":null,"url":null,"abstract":"With the rapid increase of deep learning technology, creating human face images with artificial intelligence (AI) is becoming easier. Those generated images are coming up to images that humans cannot distinguish from authentic ones. It is essential to realize an accurate method to detect such fake images to avoid abusing them. In this paper, we propose a fake image detection using an ensemble model of convolutional neural network (CNN) models that focus on deepfake detection of individual face parts. Our results show that a combination of deepfake detection based on different face parts is effective. This idea can be adopted on partially manipulated deepfake images/videos.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the rapid increase of deep learning technology, creating human face images with artificial intelligence (AI) is becoming easier. Those generated images are coming up to images that humans cannot distinguish from authentic ones. It is essential to realize an accurate method to detect such fake images to avoid abusing them. In this paper, we propose a fake image detection using an ensemble model of convolutional neural network (CNN) models that focus on deepfake detection of individual face parts. Our results show that a combination of deepfake detection based on different face parts is effective. This idea can be adopted on partially manipulated deepfake images/videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用针对单个面部部分的CNN模型集合进行假图像检测
随着深度学习技术的快速发展,用人工智能(AI)创建人脸图像变得越来越容易。这些生成的图像接近于人类无法与真实图像区分的图像。为了避免虚假图像的滥用,有必要实现一种准确的检测方法。在本文中,我们提出了一种使用卷积神经网络(CNN)模型的集成模型的假图像检测,该模型专注于对单个面部部位的深度假检测。结果表明,基于不同人脸部位的深度假检测组合是有效的。这个想法可以在部分操纵的深度伪造图像/视频上采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Status Monitoring System with Feedback from Fatigue Detection and Lane Line Detection Efficient and High-Performance Sparse Matrix-Vector Multiplication on a Many-Core Array Impact of Programming Language Skills in Programming Learning Composite Lightweight Authenticated Encryption Based on LED Block Cipher and PHOTON Hash Function for IoT Devices Message from the Chairs: Welcome to the 2022 IEEE 15th International Symposium on embedded Multicore/Many-core Systems-on-Chip (IEEE MCSoC-2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1