Free-Space Optical Communication System Using Non-mode-Selective Photonic Lantern Based Receiver With Different Number of Single-Mode Fiber Cores

Renzhi Yuan, Zhifeng Wang, M. Peng
{"title":"Free-Space Optical Communication System Using Non-mode-Selective Photonic Lantern Based Receiver With Different Number of Single-Mode Fiber Cores","authors":"Renzhi Yuan, Zhifeng Wang, M. Peng","doi":"10.1109/iccc52777.2021.9580395","DOIUrl":null,"url":null,"abstract":"The optical receiver based on non-mode-selective photonic lantern (NMS-PL) can be used to improve the communication performance of free-space optical communication (FSOC) systems, because the NMS-PL receiver can take advantages of the high coupling efficiency of multimode fiber (MMF) receivers and the high mixing efficiency of single-mode fiber (SMF) receivers. However, previous studies on the NMS-PL receiver did not consider the impact of the number of SMF cores of the NMS-PL on the bit-error rate (BER) performance under different power distributions of the NMS- PL. In this paper, we study the BER of the NMS-PL receiver using equal-gain combining (EGC) for FSOC systems under a log-normal turbulent fading channel with pointing errors. We derive both a lower bound and an approximated upper bound of the BER of the NMS-PL receiver using EGC. Numerical results show that the BER of NMS-PL receiver attains its minimum value when the number of SMF cores equals the number of guided modes of NMS-PL. Besides, numerical results also show that the power distribution of the NMS-PL has only limited influence on the BER of NMS-PL receiver using EGC when either strong turbulence or large pointing error is considered.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The optical receiver based on non-mode-selective photonic lantern (NMS-PL) can be used to improve the communication performance of free-space optical communication (FSOC) systems, because the NMS-PL receiver can take advantages of the high coupling efficiency of multimode fiber (MMF) receivers and the high mixing efficiency of single-mode fiber (SMF) receivers. However, previous studies on the NMS-PL receiver did not consider the impact of the number of SMF cores of the NMS-PL on the bit-error rate (BER) performance under different power distributions of the NMS- PL. In this paper, we study the BER of the NMS-PL receiver using equal-gain combining (EGC) for FSOC systems under a log-normal turbulent fading channel with pointing errors. We derive both a lower bound and an approximated upper bound of the BER of the NMS-PL receiver using EGC. Numerical results show that the BER of NMS-PL receiver attains its minimum value when the number of SMF cores equals the number of guided modes of NMS-PL. Besides, numerical results also show that the power distribution of the NMS-PL has only limited influence on the BER of NMS-PL receiver using EGC when either strong turbulence or large pointing error is considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不同单模光纤芯数的非模式选择光子灯接收机的自由空间光通信系统
基于非模式选择光子灯(NMS-PL)的光接收机可以利用多模光纤(MMF)接收机的高耦合效率和单模光纤(SMF)接收机的高混频效率,从而提高自由空间光通信(FSOC)系统的通信性能。然而,以往对NMS-PL接收机的研究并未考虑NMS-PL在不同功率分布下SMF核数对误码率(BER)性能的影响。本文采用等增益组合(EGC)方法研究了具有指向误差的对数正态湍流衰落信道下FSOC系统的NMS-PL接收机的误码率(BER)。我们用EGC推导了NMS-PL接收机误码率的下界和近似上界。数值结果表明,当SMF核数与NMS-PL导模数相等时,NMS-PL接收机的误码率达到最小。此外,数值结果还表明,在考虑强湍流或大指向误差的情况下,功率分布对采用EGC的NMS-PL接收机误码率的影响有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1