A. Shadman, Ehsanur Rahman, S. Biswas, Kanak Datta, Q. Khosru
{"title":"Ballistic transport characteristic of ingaas quantum well surface channel MOSFET including effects of physical device parameter","authors":"A. Shadman, Ehsanur Rahman, S. Biswas, Kanak Datta, Q. Khosru","doi":"10.1109/ICECE.2014.7026914","DOIUrl":null,"url":null,"abstract":"In this paper, impact of device & process parameter variation on quantum ballistic Current-Voltage (I-V) characteristics of a surface channel, High K stack gate Quantum Well MOSFET is simulated. Physical device parameters like channel thickness, gate dielectric thickness and process parameters like doping density have direct effects on quantum ballistic current. We use mode space approach with NEGF formalism to simulate Current-Voltage (I-V) characteristics. Short Channel effects (SCE) are studied from the simulation for these variations. Observed effect is scaling dielectric & channel thickness results in better subthreshold slope & Drain induced barrier lowering at the cost of On-current. By increasing doping concentration, ballistic current can be improved. However with increasing doping density, SCE effects are compromised.","PeriodicalId":335492,"journal":{"name":"8th International Conference on Electrical and Computer Engineering","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2014.7026914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, impact of device & process parameter variation on quantum ballistic Current-Voltage (I-V) characteristics of a surface channel, High K stack gate Quantum Well MOSFET is simulated. Physical device parameters like channel thickness, gate dielectric thickness and process parameters like doping density have direct effects on quantum ballistic current. We use mode space approach with NEGF formalism to simulate Current-Voltage (I-V) characteristics. Short Channel effects (SCE) are studied from the simulation for these variations. Observed effect is scaling dielectric & channel thickness results in better subthreshold slope & Drain induced barrier lowering at the cost of On-current. By increasing doping concentration, ballistic current can be improved. However with increasing doping density, SCE effects are compromised.