Image search system

P. Cho, Michael Yee
{"title":"Image search system","authors":"P. Cho, Michael Yee","doi":"10.1109/AIPR.2012.6528193","DOIUrl":null,"url":null,"abstract":"We present a prototype system which enables users to explore the global structure for digital imagery archives as well as drill-down into individual pictures. Our search engine builds upon computer vision advances made over the past decade in low-level feature matching, large data handling and object recognition. We demonstrate hierarchical clustering among images semi-cooperatively shot around MIT, automatic linking of flickr photos and aerial frames from the Grand Canyon, and video segment identification for a TV broadcast. Moreover, our software tools incorporate visible vs infrared band selection, color content quantization and human face detection. Ongoing and future extensions of this image search system are discussed.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a prototype system which enables users to explore the global structure for digital imagery archives as well as drill-down into individual pictures. Our search engine builds upon computer vision advances made over the past decade in low-level feature matching, large data handling and object recognition. We demonstrate hierarchical clustering among images semi-cooperatively shot around MIT, automatic linking of flickr photos and aerial frames from the Grand Canyon, and video segment identification for a TV broadcast. Moreover, our software tools incorporate visible vs infrared band selection, color content quantization and human face detection. Ongoing and future extensions of this image search system are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像搜索系统
我们提出了一个原型系统,使用户能够探索数字图像档案的全局结构,以及深入到单个图片。我们的搜索引擎建立在过去十年中在低水平特征匹配、大数据处理和目标识别方面取得的计算机视觉进步的基础上。我们演示了在麻省理工学院半合作拍摄的图像之间的分层聚类,flickr照片和大峡谷航拍帧的自动链接,以及电视广播的视频片段识别。此外,我们的软件工具包括可见光和红外波段选择,颜色内容量化和人脸检测。讨论了该图像搜索系统正在进行的和未来的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial feature evaluation for aerial scene analysis A new approach to graph analysis for activity based intelligence Distributed adaptive spectral and spatial sensor fusion for super-resolution classification Image search system Action classification in polarimetric infrared imagery via diffusion maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1