Network programming and mining classifier for intrusion detection using probability classification

P. Prasenna, A. V. T. RaghavRamana, R. Krishnakumar, A. Devanbu
{"title":"Network programming and mining classifier for intrusion detection using probability classification","authors":"P. Prasenna, A. V. T. RaghavRamana, R. Krishnakumar, A. Devanbu","doi":"10.1109/ICPRIME.2012.6208344","DOIUrl":null,"url":null,"abstract":"In conventional network security simply relies on mathematical algorithms and low counter measures to taken to prevent intrusion detection system, although most of this approaches in terms of theoretically challenged to implement. Therefore, a variety of algorithms have been committed to this challenge. Instead of generating large number of rules the evolution optimization techniques like Genetic Network Programming (GNP) can be used. The GNP is based on directed graph, In this paper the security issues related to deploy a data mining-based IDS in a real time environment is focused upon. We generalize the problem of GNP with association rule mining and propose a fuzzy weighted association rule mining with GNP framework suitable for both continuous and discrete attributes. Our proposal follows an Apriori algorithm based fuzzy WAR and GNP and avoids pre and post processing thus eliminating the extra steps during rules generation. This method can sufficient to evaluate misuse and anomaly detection. Experiments on KDD99Cup and DARPA98 data show the high detection rate and accuracy compared with other conventional method.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In conventional network security simply relies on mathematical algorithms and low counter measures to taken to prevent intrusion detection system, although most of this approaches in terms of theoretically challenged to implement. Therefore, a variety of algorithms have been committed to this challenge. Instead of generating large number of rules the evolution optimization techniques like Genetic Network Programming (GNP) can be used. The GNP is based on directed graph, In this paper the security issues related to deploy a data mining-based IDS in a real time environment is focused upon. We generalize the problem of GNP with association rule mining and propose a fuzzy weighted association rule mining with GNP framework suitable for both continuous and discrete attributes. Our proposal follows an Apriori algorithm based fuzzy WAR and GNP and avoids pre and post processing thus eliminating the extra steps during rules generation. This method can sufficient to evaluate misuse and anomaly detection. Experiments on KDD99Cup and DARPA98 data show the high detection rate and accuracy compared with other conventional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率分类的入侵检测网络规划与挖掘分类器
传统的网络安全仅仅依靠数学算法和较低的防御措施来采取入侵检测系统,尽管大多数这种方法在理论上难以实现。因此,各种各样的算法都致力于解决这一挑战。可以使用遗传网络规划(GNP)等进化优化技术来代替生成大量规则。本文重点研究了在实时环境中部署基于数据挖掘的入侵检测系统的安全问题。将关联规则挖掘广义化GNP问题,提出了一种适用于连续属性和离散属性的模糊加权关联规则挖掘框架。我们的建议遵循基于模糊WAR和GNP的Apriori算法,避免了预处理和后处理,从而消除了规则生成过程中的额外步骤。该方法可以充分评估误用和异常检测。在KDD99Cup和DARPA98数据上的实验表明,与其他常规方法相比,该方法具有较高的检出率和准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimized cluster based approach for multi-source multicast routing protocol in mobile ad hoc networks with differential evolution Increasing cluster uniqueness in Fuzzy C-Means through affinity measure Rule extraction from neural networks — A comparative study Text extraction from digital English comic image using two blobs extraction method A novel approach for Kannada text extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1