Mitigating the impact of voltage sags and swells on type IV wind generator systems

T. Das, Jingxin Zhang
{"title":"Mitigating the impact of voltage sags and swells on type IV wind generator systems","authors":"T. Das, Jingxin Zhang","doi":"10.1109/AUPEC.2017.8282438","DOIUrl":null,"url":null,"abstract":"This paper proposes a unique coordinated ride-through capability enhancement scheme for Type IV wind generators to counter the impact of symmetrical and asymmetrical voltage swells. A novel protection hardware configuration is utilized to restrict the dc-link overvoltage and undervoltage in the event of voltage swells at the Point of Common Coupling (PCC), which would otherwise damage the converter. Moreover, a reactive power flow management algorithm is implemented to support the grid voltage during the transient event. A supervisory controller is used to control the insertion of the protection hardware and also to regulate the reactive power flow between the generator and grid. It is observed that there is substantial improvement in ride-through performance. A 10-MW Wound Rotor Synchrnous Generator (WRSG) wind farm in MATLAB/Simscape Power Systems is utilized to validate the effectiveness of the scheme. The 10 MW wind farm consists of 5 × 2-MW wind generators.","PeriodicalId":155608,"journal":{"name":"2017 Australasian Universities Power Engineering Conference (AUPEC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2017.8282438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a unique coordinated ride-through capability enhancement scheme for Type IV wind generators to counter the impact of symmetrical and asymmetrical voltage swells. A novel protection hardware configuration is utilized to restrict the dc-link overvoltage and undervoltage in the event of voltage swells at the Point of Common Coupling (PCC), which would otherwise damage the converter. Moreover, a reactive power flow management algorithm is implemented to support the grid voltage during the transient event. A supervisory controller is used to control the insertion of the protection hardware and also to regulate the reactive power flow between the generator and grid. It is observed that there is substantial improvement in ride-through performance. A 10-MW Wound Rotor Synchrnous Generator (WRSG) wind farm in MATLAB/Simscape Power Systems is utilized to validate the effectiveness of the scheme. The 10 MW wind farm consists of 5 × 2-MW wind generators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减轻电压下降和膨胀对IV型风力发电机系统的影响
本文提出了一种独特的四型风力发电机协调穿越能力增强方案,以应对对称和不对称电压波动的影响。采用一种新颖的保护硬件配置,在共耦合点(PCC)电压膨胀时限制直流链路过压和欠压,否则会损坏变换器。此外,还实现了一种无功潮流管理算法,以支持暂态事件期间的电网电压。监控控制器用于控制保护硬件的插入,并调节发电机和电网之间的无功功率流。可以观察到,穿越性能有实质性的改善。利用MATLAB/Simscape Power Systems中的10 mw绕线转子同步发电机(WRSG)风电场验证了该方案的有效性。10兆瓦的风电场由5 × 2兆瓦的风力发电机组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of automatic hyperparameter tuning for residential load forecasting via deep learning Hybrid power plant bidding strategy including a commercial compressed air energy storage aggregator and a wind power producer Modeling of multi-junction solar cells for maximum power point tracking to improve the conversion efficiency The importance of lightning education and a lightning protection risk assessment to reduce fatalities Recent advances in common mode voltage mitigation techniques based on MPC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1