Improving Short Text Clustering by Similarity Matrix Sparsification

Md. Rashadul Hasan Rakib, Magdalena Jankowska, N. Zeh, E. Milios
{"title":"Improving Short Text Clustering by Similarity Matrix Sparsification","authors":"Md. Rashadul Hasan Rakib, Magdalena Jankowska, N. Zeh, E. Milios","doi":"10.1145/3209280.3229114","DOIUrl":null,"url":null,"abstract":"Short text clustering is an important but challenging task. We investigate impact of similarity matrix sparsification on the performance of short text clustering. We show that two sparsification methods (the proposed Similarity Distribution based, and k-nearest neighbors) that aim to retain a prescribed number of similarity elements per text, improve hierarchical clustering quality of short texts for various text similarities. These methods using a word embedding based similarity yield competitive results with state-of-the-art methods for short text clustering especially for general domain, and are faster than the main state-of-the-art baseline.","PeriodicalId":234145,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209280.3229114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Short text clustering is an important but challenging task. We investigate impact of similarity matrix sparsification on the performance of short text clustering. We show that two sparsification methods (the proposed Similarity Distribution based, and k-nearest neighbors) that aim to retain a prescribed number of similarity elements per text, improve hierarchical clustering quality of short texts for various text similarities. These methods using a word embedding based similarity yield competitive results with state-of-the-art methods for short text clustering especially for general domain, and are faster than the main state-of-the-art baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似矩阵稀疏的短文本聚类改进
短文本聚类是一项重要但具有挑战性的任务。我们研究了相似矩阵稀疏化对短文本聚类性能的影响。我们展示了两种稀疏化方法(基于相似度分布和k近邻),旨在保留每个文本规定数量的相似元素,提高了各种文本相似度的短文本分层聚类质量。这些方法使用基于词嵌入的相似度,在短文本聚类方面,特别是在一般领域,与最先进的方法产生竞争结果,并且比最先进的基线更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Workflow Support for Live Object-Based Broadcasting SlideDiff Automatic Term Extraction in Technical Domain using Part-of-Speech and Common-Word Features A Market Analytics Approach to Restaurant Review Data Main Content Detection in HTML Journal Articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1