Automatic recognition of the sonar signals using neural network

O. Abdel Allim, H. Fahmy Hashem
{"title":"Automatic recognition of the sonar signals using neural network","authors":"O. Abdel Allim, H. Fahmy Hashem","doi":"10.1109/NRSC.1998.711495","DOIUrl":null,"url":null,"abstract":"Much work has been performed in the area of automatic recognition of sonar signals in order to reduce the operator load when confronted with many beams of data concurrently. This paper describes a neural network system which is capable of recognizing different types of sonar signals. The given results show that neural network techniques have potential as possible implementation solutions for the recognition functions of targets with complex geometrical shape.","PeriodicalId":128355,"journal":{"name":"Proceedings of the Fifteenth National Radio Science Conference. NRSC '98 (Cat. No.98EX109)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth National Radio Science Conference. NRSC '98 (Cat. No.98EX109)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1998.711495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Much work has been performed in the area of automatic recognition of sonar signals in order to reduce the operator load when confronted with many beams of data concurrently. This paper describes a neural network system which is capable of recognizing different types of sonar signals. The given results show that neural network techniques have potential as possible implementation solutions for the recognition functions of targets with complex geometrical shape.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络对声纳信号进行自动识别
在声纳信号自动识别领域,为了减少操作员同时面对多波束数据时的工作量,已经做了大量的工作。本文介绍了一种能够识别不同类型声纳信号的神经网络系统。结果表明,神经网络技术具有实现复杂几何形状目标识别功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study and modeling of a new MOSFET device for precision detection of microwave signal polarization A robust iterative scheme for FEM applications terminated by the perfectly matched layer (PML) absorbers Analysis of intrinsic small signal parameters in HEMTs Wide-range portable dosimeter based on microcontroller The penetration of nuclear electromagnetic pulses (EMP) through shielded communication cables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1