Minimizing packet loss by optimizing OSPF weights using online simulation

H. T. Kaur, Tao Ye, S. Kalyanaraman, K. Vastola
{"title":"Minimizing packet loss by optimizing OSPF weights using online simulation","authors":"H. T. Kaur, Tao Ye, S. Kalyanaraman, K. Vastola","doi":"10.1109/MASCOT.2003.1240645","DOIUrl":null,"url":null,"abstract":"In this paper, we present a scheme for minimizing packet loss in OSPF networks by optimizing link weights using online simulation. We have chosen packet loss rate in the network as the optimization metric as it is a good indicator of congestion and impacts the performance of the underlying applications. We have formulated packet loss rate in the network in terms of the link parameters, such as bandwidth and buffer space, and the parameters of the traffic demands. A GI/M/1/K queuing model has been used to compute the packet drop probability on a given link. The problem of optimizing OSPF weights is known to be NP-hard even for the case of a linear objective function Bernard Fortz and Mikkel Thorup (2000), We use online simulation (OLS) framework T. Ye et al. (2001) to search for a good link weight setting and as a tool for automatic network management. OLS uses fast, scalable recursive random search (RRS) algorithm to search the parameter space. Our results demonstrate that the RRS takes 50-90% fewer function evaluations as compared to the local search heuristic Bernard Fortz and Mikkel Thorup (2000) of to find a \"good\" link weight setting. The amount of improvement depends on the network topology, traffic conditions and optimization metric. We have simulated the proposed OSPF optimization scheme using ns and our results demonstrate improvements of the order of 30-60% in the total packet drop rate for the traffic and topologies considered.","PeriodicalId":344411,"journal":{"name":"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2003.1240645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, we present a scheme for minimizing packet loss in OSPF networks by optimizing link weights using online simulation. We have chosen packet loss rate in the network as the optimization metric as it is a good indicator of congestion and impacts the performance of the underlying applications. We have formulated packet loss rate in the network in terms of the link parameters, such as bandwidth and buffer space, and the parameters of the traffic demands. A GI/M/1/K queuing model has been used to compute the packet drop probability on a given link. The problem of optimizing OSPF weights is known to be NP-hard even for the case of a linear objective function Bernard Fortz and Mikkel Thorup (2000), We use online simulation (OLS) framework T. Ye et al. (2001) to search for a good link weight setting and as a tool for automatic network management. OLS uses fast, scalable recursive random search (RRS) algorithm to search the parameter space. Our results demonstrate that the RRS takes 50-90% fewer function evaluations as compared to the local search heuristic Bernard Fortz and Mikkel Thorup (2000) of to find a "good" link weight setting. The amount of improvement depends on the network topology, traffic conditions and optimization metric. We have simulated the proposed OSPF optimization scheme using ns and our results demonstrate improvements of the order of 30-60% in the total packet drop rate for the traffic and topologies considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在线模拟优化OSPF的权重,使丢包最小化
在本文中,我们提出了一种通过在线仿真优化链路权重来最小化OSPF网络中丢包的方案。我们选择网络中的丢包率作为优化指标,因为它是一个很好的拥塞指标,并影响底层应用程序的性能。我们根据链路参数,如带宽和缓冲空间,以及流量需求参数,制定了网络中的丢包率。采用GI/M/1/K排队模型计算给定链路上的丢包概率。即使对于线性目标函数Bernard Fortz和Mikkel Thorup(2000),优化OSPF权重的问题也被认为是np困难的。我们使用在线模拟(OLS)框架T. Ye等人(2001)来寻找一个好的链路权重设置,并作为自动网络管理的工具。OLS使用快速、可扩展的递归随机搜索(RRS)算法来搜索参数空间。我们的结果表明,与局部搜索启发式Bernard Fortz和Mikkel Thorup(2000)相比,RRS需要的函数评估减少了50-90%,以找到一个“好的”链接权重设置。改进的数量取决于网络拓扑、流量条件和优化度量。我们使用ns对提出的OSPF优化方案进行了仿真,结果表明,对于所考虑的流量和拓扑结构,总丢包率提高了30-60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An open tool to compute stochastic bounds on steady-state distributions and rewards Twotowers 3.0: enhancing usability Analysis of design alternatives for reverse proxy cache providers MQNA - Markovian queueing networks analyser Zone-based shortest positioning time first scheduling for MEMS-based storage devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1