Distributed evolutionary approach to data clustering and modeling

Mustafa H. Hajeer, D. Dasgupta, Alexander Semenov, J. Veijalainen
{"title":"Distributed evolutionary approach to data clustering and modeling","authors":"Mustafa H. Hajeer, D. Dasgupta, Alexander Semenov, J. Veijalainen","doi":"10.1109/CIDM.2014.7008660","DOIUrl":null,"url":null,"abstract":"In this article we describe a framework (DEGA-Gen) for the application of distributed genetic algorithms for detection of communities in networks. The framework proposes efficient ways of encoding the network in the chromosomes, greatly optimizing the memory use and computations, resulting in a scalable framework. Different objective functions may be used for producing division of network into communities. The framework is implemented using open source implementation of MapReduce paradigm, Hadoop. We validate the framework by developing community detection algorithm, which uses modularity as measure of the division. Result of the algorithm is the network, partitioned into non-overlapping communities, in such a way, that network modularity is maximized. We apply the algorithm to well-known data sets, such as Zachary Karate club, bottlenose Dolphins network, College football dataset, and US political books dataset. Framework shows comparable results in achieved modularity; however, much less space is used for network representation in memory. Further, the framework is scalable and can deal with large graphs as it was tested on a larger youtube.com dataset.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this article we describe a framework (DEGA-Gen) for the application of distributed genetic algorithms for detection of communities in networks. The framework proposes efficient ways of encoding the network in the chromosomes, greatly optimizing the memory use and computations, resulting in a scalable framework. Different objective functions may be used for producing division of network into communities. The framework is implemented using open source implementation of MapReduce paradigm, Hadoop. We validate the framework by developing community detection algorithm, which uses modularity as measure of the division. Result of the algorithm is the network, partitioned into non-overlapping communities, in such a way, that network modularity is maximized. We apply the algorithm to well-known data sets, such as Zachary Karate club, bottlenose Dolphins network, College football dataset, and US political books dataset. Framework shows comparable results in achieved modularity; however, much less space is used for network representation in memory. Further, the framework is scalable and can deal with large graphs as it was tested on a larger youtube.com dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据聚类和建模的分布式进化方法
在本文中,我们描述了一个框架(DEGA-Gen),用于分布式遗传算法在网络中检测社区的应用。该框架提出了在染色体中编码网络的有效方法,极大地优化了内存使用和计算,从而使框架具有可扩展性。可以使用不同的目标函数来产生网络的社区划分。该框架是使用MapReduce范式的开源实现Hadoop来实现的。我们通过开发社区检测算法来验证该框架,该算法使用模块化作为划分的度量。算法的结果是将网络划分为不重叠的社区,从而使网络的模块化最大化。我们将该算法应用于众所周知的数据集,如Zachary空手道俱乐部、宽吻海豚网络、大学足球数据集和美国政治书籍数据集。框架在实现模块化方面显示出可比的结果;然而,内存中用于网络表示的空间要少得多。此外,该框架是可扩展的,可以处理大型图形,因为它在更大的youtube.com数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1