Bayesian data and channel joint maximum-likelihood based error correction in wireless sensor networks

A. Katiyar, A. Jagannatham
{"title":"Bayesian data and channel joint maximum-likelihood based error correction in wireless sensor networks","authors":"A. Katiyar, A. Jagannatham","doi":"10.1145/2185216.2185261","DOIUrl":null,"url":null,"abstract":"We propose a novel Bayesian error correction algorithm based on joint channel and data maximal-likelihood (ML) detection in wireless sensor networks (WSN). The proposed algorithm employs the temporal correlation of the narrowband sensor data in conjunction with the channel state information (CSI) for detection and error correction of the data received over the Rayleigh fading wireless channel. The proposed joint maximum-likelihood (JML) algorithm compares the joint channel and data likelihoods along different paths of the data likelihood tree (DLT), which is readily adaptable for efficient practical implementation in WSNs. Further, the JML scheme employs the sphere decoder for computation of the maximally likely sphere sensor data vectors in the WSN and thus has a low computational complexity. Simulation results demonstrate significantly reduced sensor error for the proposed WSN sensor correction technique over competing schemes existing in current literature.","PeriodicalId":180836,"journal":{"name":"International Conference on Wireless Technologies for Humanitarian Relief","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless Technologies for Humanitarian Relief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185216.2185261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel Bayesian error correction algorithm based on joint channel and data maximal-likelihood (ML) detection in wireless sensor networks (WSN). The proposed algorithm employs the temporal correlation of the narrowband sensor data in conjunction with the channel state information (CSI) for detection and error correction of the data received over the Rayleigh fading wireless channel. The proposed joint maximum-likelihood (JML) algorithm compares the joint channel and data likelihoods along different paths of the data likelihood tree (DLT), which is readily adaptable for efficient practical implementation in WSNs. Further, the JML scheme employs the sphere decoder for computation of the maximally likely sphere sensor data vectors in the WSN and thus has a low computational complexity. Simulation results demonstrate significantly reduced sensor error for the proposed WSN sensor correction technique over competing schemes existing in current literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯数据和信道联合最大似然的无线传感器网络误差校正
在无线传感器网络(WSN)中提出了一种基于联合信道和数据最大似然(ML)检测的贝叶斯纠错算法。该算法利用窄带传感器数据的时间相关性与信道状态信息(CSI)相结合,对瑞利衰落无线信道接收的数据进行检测和纠错。提出的联合最大似然(JML)算法比较了数据似然树(DLT)不同路径上的联合通道和数据似然,该算法易于在wsn中高效实现。此外,JML方案使用球体解码器计算WSN中最大可能的球体传感器数据向量,因此具有较低的计算复杂度。仿真结果表明,与现有文献中存在的竞争方案相比,所提出的WSN传感器校正技术显著降低了传感器误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A simultaneous routing and localization algorithm for wireless sensor networks in emergency scenario Monitoring Schumann resonance and other electromagnetic precursors of an earthquake with a virtual MIMO wireless sensor network Some comments on wireless sensor networks for natural hazards KARSHIK: agricultural information monitoring and reference based on wireless networks Robust RF fingerprinting techniques in 4G networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1