S. Shapoval, V. Zhelykh, Iryna Venhryn, Khrystyna Myroniuk, M. Gensetskyi
{"title":"EXAMINATION OF THE THERMAL EFFICIENCY OF THE SOLAR COLLECTOR INTEGRATED INTO THE LIGHT TRANSPARENT BUILDING FACADE","authors":"S. Shapoval, V. Zhelykh, Iryna Venhryn, Khrystyna Myroniuk, M. Gensetskyi","doi":"10.23939/jtbp2020.01.030","DOIUrl":null,"url":null,"abstract":"The work describes the prospects for the development of solar energy in Ukraine. Interest in the effective use of solar radiation by solar collectors justifies the relevance and expediency of research on the problem of using such energy in them. It is analyzed that solar energy remains a promising direction for generating thermal energy due to: the increased volume of solar radiation entering the territory of Ukraine and the wear or tear of technological equipment running on traditional organic fuel. Also, if taking into account the trend of building glass facades in the field of construction, in the work proposed solar collector which was integrated into the light transparent facade of the building. The solar collector model was developed for the purpose of in order to save space where solar collectors should be installed and to save fossil fuels. The temperature at the outlet of the solar collector reached 22.9 °C according to the intensity of the simulated solar radiation of 900 W/m, which fell on the absorbing surface of the solar collector. Comparing the changes in the instantaneous power of the solar collector QSC, W/m, it was found that at 60 minutes of the experiment was greater than 250 W/m under the intensity of the simulated solar radiation of 900 W/m. The efficiency of the experimental solar collector reached ≈33% in the direct heat carrier mode in the system according to the intensity of the simulated solar radiation. It was established, that the proposed solar collector in the mode of direct heat carrier was the effective source of low potential heat supply under intensities which could correspond to the power of solar radiation at summer time of the year. The promising direction for further research will be the efficiency establishing of the collector under simulated intensities of the solar radiation and other modes of operation of the heat carrier.","PeriodicalId":369033,"journal":{"name":"Theory and Building Practice","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Building Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jtbp2020.01.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work describes the prospects for the development of solar energy in Ukraine. Interest in the effective use of solar radiation by solar collectors justifies the relevance and expediency of research on the problem of using such energy in them. It is analyzed that solar energy remains a promising direction for generating thermal energy due to: the increased volume of solar radiation entering the territory of Ukraine and the wear or tear of technological equipment running on traditional organic fuel. Also, if taking into account the trend of building glass facades in the field of construction, in the work proposed solar collector which was integrated into the light transparent facade of the building. The solar collector model was developed for the purpose of in order to save space where solar collectors should be installed and to save fossil fuels. The temperature at the outlet of the solar collector reached 22.9 °C according to the intensity of the simulated solar radiation of 900 W/m, which fell on the absorbing surface of the solar collector. Comparing the changes in the instantaneous power of the solar collector QSC, W/m, it was found that at 60 minutes of the experiment was greater than 250 W/m under the intensity of the simulated solar radiation of 900 W/m. The efficiency of the experimental solar collector reached ≈33% in the direct heat carrier mode in the system according to the intensity of the simulated solar radiation. It was established, that the proposed solar collector in the mode of direct heat carrier was the effective source of low potential heat supply under intensities which could correspond to the power of solar radiation at summer time of the year. The promising direction for further research will be the efficiency establishing of the collector under simulated intensities of the solar radiation and other modes of operation of the heat carrier.