Reinforcement Learning for Battery Energy Storage Dispatch augmented with Model-based Optimizer

Gayathri Krishnamoorthy, A. Dubey
{"title":"Reinforcement Learning for Battery Energy Storage Dispatch augmented with Model-based Optimizer","authors":"Gayathri Krishnamoorthy, A. Dubey","doi":"10.1109/SmartGridComm51999.2021.9632292","DOIUrl":null,"url":null,"abstract":"Reinforcement learning algorithms have been found useful in solving optimal power flow (OPF) problems in electric power distribution systems. However, the use of largely model-free reinforcement learning algorithms that completely ignore the physics-based modeling of the power grid compromises the optimizer performance and poses scalability challenges. This paper proposes a novel approach to synergistically combine the physics-based models with learning-based algorithms using imitation learning to solve distribution-level OPF problems. Specifically, we propose imitation learning based improvements in deep reinforcement learning (DRL) methods to solve the OPF problem for a specific case of battery storage dispatch in the power distribution systems. The proposed imitation learning algorithm uses the approximate optimal solutions obtained from a linearized model-based OPF solver to provide a good initial policy for the DRL algorithms while improving the training efficiency. The effectiveness of the proposed approach is demonstrated using IEEE 34-bus and 123-bus distribution feeders with numerous distribution-level battery storage systems.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reinforcement learning algorithms have been found useful in solving optimal power flow (OPF) problems in electric power distribution systems. However, the use of largely model-free reinforcement learning algorithms that completely ignore the physics-based modeling of the power grid compromises the optimizer performance and poses scalability challenges. This paper proposes a novel approach to synergistically combine the physics-based models with learning-based algorithms using imitation learning to solve distribution-level OPF problems. Specifically, we propose imitation learning based improvements in deep reinforcement learning (DRL) methods to solve the OPF problem for a specific case of battery storage dispatch in the power distribution systems. The proposed imitation learning algorithm uses the approximate optimal solutions obtained from a linearized model-based OPF solver to provide a good initial policy for the DRL algorithms while improving the training efficiency. The effectiveness of the proposed approach is demonstrated using IEEE 34-bus and 123-bus distribution feeders with numerous distribution-level battery storage systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型优化器的电池储能调度强化学习
强化学习算法在解决配电系统的最优潮流(OPF)问题中非常有用。然而,使用大量的无模型强化学习算法,完全忽略了电网的基于物理的建模,损害了优化器的性能,并带来了可扩展性的挑战。本文提出了一种新的方法,将基于物理的模型与基于学习的算法协同结合,使用模仿学习来解决分布级OPF问题。具体而言,我们提出了基于模仿学习的深度强化学习(DRL)方法的改进,以解决配电系统中电池储能调度的特定情况下的OPF问题。本文提出的模仿学习算法利用基于线性化模型的OPF求解器得到的近似最优解,为DRL算法提供了良好的初始策略,同时提高了训练效率。采用IEEE 34总线和123总线配电馈线与多个配电级电池存储系统验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1