Comparison of missing data filling methods in bridge health monitoring system

Youqing Ding, Yumei Fu, Fang Zhu, Xinwu Zan
{"title":"Comparison of missing data filling methods in bridge health monitoring system","authors":"Youqing Ding, Yumei Fu, Fang Zhu, Xinwu Zan","doi":"10.1109/ICCI-CC.2013.6622280","DOIUrl":null,"url":null,"abstract":"In terms of the data characteristics of small sample, nonlinearity and seasonal regression in bridge health monitoring system, this paper analyses the applied results with different data filling methods such as linear regression, seasonal autoregressive integrated moving average (SARIMA), neural network BP approach and support vector machine (SVM). The comparison results show that support vector machines (SVM) and BP neural network have higher precision in the case of the same sample. The filling results show that support vector machines (SVM) has a higher accuracy than neural network BP with the small samples.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In terms of the data characteristics of small sample, nonlinearity and seasonal regression in bridge health monitoring system, this paper analyses the applied results with different data filling methods such as linear regression, seasonal autoregressive integrated moving average (SARIMA), neural network BP approach and support vector machine (SVM). The comparison results show that support vector machines (SVM) and BP neural network have higher precision in the case of the same sample. The filling results show that support vector machines (SVM) has a higher accuracy than neural network BP with the small samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桥梁健康监测系统中缺失数据填充方法的比较
针对桥梁健康监测系统数据小样本、非线性和季节性回归的特点,分析了线性回归、季节自回归积分移动平均(SARIMA)、神经网络BP法和支持向量机(SVM)等不同数据填充方法的应用效果。对比结果表明,在相同的样本情况下,支持向量机(SVM)和BP神经网络具有更高的精度。结果表明,在小样本情况下,支持向量机比神经网络BP具有更高的填充精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordering: A reliable qualitative information for the alignment of sketch and metric maps Visual words sequence alignment for image classification Survey of measures for the structural dimension of ontologies An emotional regulation model with memories for virtual agents Visual words selection based on class separation measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1