Radiomics Analysis of Subcortical Brain Regions Related to Alzheimer Disease

A. Chaddad, T. Niazi
{"title":"Radiomics Analysis of Subcortical Brain Regions Related to Alzheimer Disease","authors":"A. Chaddad, T. Niazi","doi":"10.1109/LSC.2018.8572264","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is the most common form of dementia that causes progressive impairment of memory and cognitive functions of patients. However, whether imaging features can be utilised as biomarkers for this disease has not been explored. To address this, we encoded subcortical regions of the brain using 45 radiomic features to identify features specific for AD patients. We comprehensively evaluated the proposed approach using the OASIS dataset, assessing significance via the Wilcoxon test and Random Forest (RF) classifier models to identify the subcortical regions best able to identify AD patients. Our results show that features (i.e., correlation and volume) derived from several subcortical regions (i.e., cerebral, thalamus, caudate Putamen, Pallidum, hippocampus, amygdala, and stem-and-cerebrospinal-fluid) are able to identify AD from healthy control (HC) subjects with the hippocampus and amygdala reaching $\\mathrm{p} < 0.01$ following Holm-Bonferroni correction. Consistent with this, hippocampus ($\\mathbf{AUC}=\\mathbf{81.19-84.09}\\%$) and amygdala ($\\mathbf{AUC}=\\mathbf{79.70-80.27}\\%$) regions showed a higher AUC value compared to other subcortical regions. Combining radiomic features derived from all subcortical regions produced an AUC value of 91.54% for classifying AD from HC subjects. RF analysis revealed that from the 45 radiomic features, correlation and volume are the most important features for the classifier model. These results demonstrate that radiomic features extracted from hippocampus and amygdala regions are relevant biomarkers for AD patients and that correlation and volume features are the most important features to build this model.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Alzheimer's disease (AD) is the most common form of dementia that causes progressive impairment of memory and cognitive functions of patients. However, whether imaging features can be utilised as biomarkers for this disease has not been explored. To address this, we encoded subcortical regions of the brain using 45 radiomic features to identify features specific for AD patients. We comprehensively evaluated the proposed approach using the OASIS dataset, assessing significance via the Wilcoxon test and Random Forest (RF) classifier models to identify the subcortical regions best able to identify AD patients. Our results show that features (i.e., correlation and volume) derived from several subcortical regions (i.e., cerebral, thalamus, caudate Putamen, Pallidum, hippocampus, amygdala, and stem-and-cerebrospinal-fluid) are able to identify AD from healthy control (HC) subjects with the hippocampus and amygdala reaching $\mathrm{p} < 0.01$ following Holm-Bonferroni correction. Consistent with this, hippocampus ($\mathbf{AUC}=\mathbf{81.19-84.09}\%$) and amygdala ($\mathbf{AUC}=\mathbf{79.70-80.27}\%$) regions showed a higher AUC value compared to other subcortical regions. Combining radiomic features derived from all subcortical regions produced an AUC value of 91.54% for classifying AD from HC subjects. RF analysis revealed that from the 45 radiomic features, correlation and volume are the most important features for the classifier model. These results demonstrate that radiomic features extracted from hippocampus and amygdala regions are relevant biomarkers for AD patients and that correlation and volume features are the most important features to build this model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与阿尔茨海默病相关的皮质下脑区放射组学分析
阿尔茨海默病(AD)是一种最常见的痴呆症,会导致患者记忆力和认知功能的进行性损伤。然而,影像学特征是否可以作为这种疾病的生物标志物尚未被探索。为了解决这个问题,我们使用45种放射学特征对大脑皮层下区域进行编码,以识别AD患者的特异性特征。我们使用OASIS数据集全面评估了所提出的方法,通过Wilcoxon检验和随机森林(RF)分类器模型评估了识别最能识别AD患者的皮质下区域的重要性。我们的研究结果表明,来自几个皮质下区域(即大脑、丘脑、尾状壳核、白质、海马、杏仁核和脑干-脑脊液)的特征(即相关性和体积)能够识别健康对照(HC)受试者,在Holm-Bonferroni校正后,海马和杏仁核达到$\ mathm {p} < 0.01$。与此一致,海马区($\mathbf{AUC}=\mathbf{81.19-84.09}\%$)和杏仁核区($\mathbf{AUC}=\mathbf{79.70-80.27}\%$)的AUC值高于其他皮质下区域。结合所有皮质下区域的放射学特征,对HC患者进行AD分类的AUC值为91.54%。射频分析表明,从45个放射学特征中,相关性和体积是分类器模型最重要的特征。这些结果表明,从海马和杏仁核区域提取的放射组学特征是AD患者的相关生物标志物,相关性和体积特征是构建该模型的最重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Veterinary Medicine Engineering Challenges and Opportunities Kinematic Data Clustering for Healthy Knee Gait Characterization A Nanosurface Microfluidic Device for Capture and Detection of Bacteria A Novel Fully Differential NMR Transciever Automated Enumeration and Classification of Bacteria in Fluorescent Microscopy Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1