Trajectory prediction method based on a graph model for autonomous driving

{"title":"Trajectory prediction method based on a graph model for autonomous driving","authors":"","doi":"10.36652/0869-4931-2022-76-9-408-413","DOIUrl":null,"url":null,"abstract":"A method for predicting the trajectory of an unmanned vehicle using graphs and a network of long short-term memory (LSTM) is developed. The learning model of LSTM network uses an encoder and decoder structure. Based on the graph and the attention mechanism, the encoder encodes information about the received trajectory to form a feature vector, which is puted to the decoder to predict future trajectories. To cope with multimodality in predicting vehicle maneuvers, module of convolutional network (CNN) is used. These two networks: LSTM and CNN are integrated for multimodal trajectory prediction.\n\nKeywords\nunmanned vehicle, trajectory prediction, maneuver, graph, LSTM, CNN, attention mechanism","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4931-2022-76-9-408-413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for predicting the trajectory of an unmanned vehicle using graphs and a network of long short-term memory (LSTM) is developed. The learning model of LSTM network uses an encoder and decoder structure. Based on the graph and the attention mechanism, the encoder encodes information about the received trajectory to form a feature vector, which is puted to the decoder to predict future trajectories. To cope with multimodality in predicting vehicle maneuvers, module of convolutional network (CNN) is used. These two networks: LSTM and CNN are integrated for multimodal trajectory prediction. Keywords unmanned vehicle, trajectory prediction, maneuver, graph, LSTM, CNN, attention mechanism
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图模型的自动驾驶轨迹预测方法
提出了一种利用图形和长短期记忆网络(LSTM)预测无人驾驶飞行器轨迹的方法。LSTM网络的学习模型采用编码器和解码器结构。基于图和注意机制,编码器对接收到的轨迹信息进行编码,形成特征向量,将特征向量输入到解码器中,用于预测未来的轨迹。为了应对车辆机动预测的多模态,采用了卷积网络(CNN)模块。结合LSTM和CNN两种网络进行多模态轨迹预测。关键词:无人驾驶飞行器,轨迹预测,机动,图,LSTM, CNN,注意机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetoelectric sensor for non-destructive testing Landing system for MUAV on a mobile base by using short-range radio beacons Improving the tracking quality of the weld seam butt with V-form grooving by using Kalman filter and neural network Automation the assembly process of a passenger car gearbox Compensation method of the satellite navigation system reflected signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1