{"title":"Development and Design of the Dynamic Vibration Absorber Using Magneto-Rheological Elastomer for the Weight and Power Consumption Saving","authors":"O. Terashima, M. Nakata, T. Komatsuzaki","doi":"10.1115/imece2019-10776","DOIUrl":null,"url":null,"abstract":"\n In this study, a broadband frequency tunable dynamic absorber was designed and fabricated based on the primary design principle of a mass damper. A magneto-rheological elastomer that can change the relative stiffness when an external magnetic field is applied was used to control the natural frequency of the movable mass of the absorber. A coil to generate the magnetic field was also used as a movable mass to decrease the total weight and to create a constant closed loop of the magnetic force. The hammer impact test results show that the present absorber could change its natural frequency with minimal electric power and had a constant damping ratio. Experimental results of vibration absorbing of an acrylic flat plate show that the proposed absorber could change the natural frequency of the movable mass and reduce the vibration over a wide band by constantly applying the optimum current to the coil in the device with a small power consumption (less than 10 W). Therefore, the proposed absorber works effectively. Further, a technique to determine the electric current applied to the coil automatically based on the phase difference of the vibrational acceleration of the movable mass and the vibrating objective was also presented.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a broadband frequency tunable dynamic absorber was designed and fabricated based on the primary design principle of a mass damper. A magneto-rheological elastomer that can change the relative stiffness when an external magnetic field is applied was used to control the natural frequency of the movable mass of the absorber. A coil to generate the magnetic field was also used as a movable mass to decrease the total weight and to create a constant closed loop of the magnetic force. The hammer impact test results show that the present absorber could change its natural frequency with minimal electric power and had a constant damping ratio. Experimental results of vibration absorbing of an acrylic flat plate show that the proposed absorber could change the natural frequency of the movable mass and reduce the vibration over a wide band by constantly applying the optimum current to the coil in the device with a small power consumption (less than 10 W). Therefore, the proposed absorber works effectively. Further, a technique to determine the electric current applied to the coil automatically based on the phase difference of the vibrational acceleration of the movable mass and the vibrating objective was also presented.