Document Binarization via Multi-resolutional Attention Model with DRD Loss

Xujun Peng, Chao Wang, Huaigu Cao
{"title":"Document Binarization via Multi-resolutional Attention Model with DRD Loss","authors":"Xujun Peng, Chao Wang, Huaigu Cao","doi":"10.1109/ICDAR.2019.00017","DOIUrl":null,"url":null,"abstract":"Document binarization which separates text from background is a critical pre-processing step for many high level document analysis tasks. Conventional document binarization approaches tend to use hand-craft features and empirical rules to simulate the degradation process of document image and accomplish the binarization task. In this paper, we propose a deep learning framework where the probability of text areas is inferred through a multi-resolutional attention model, which is consequently fed into a convolutional conditional random field (ConvCRF) to obtain the final binarized document image. In the proposed approach, the features of degraded document image are learned by neural networks and the relations between text areas and backgrounds are inferred by ConvCRF, which avoids the dependence of domain knowledge from researchers and has more generalization capabilities. The experimental results on public datasets show that the proposed method has superior binarization performance than the existing state-of-the-art approaches.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Document binarization which separates text from background is a critical pre-processing step for many high level document analysis tasks. Conventional document binarization approaches tend to use hand-craft features and empirical rules to simulate the degradation process of document image and accomplish the binarization task. In this paper, we propose a deep learning framework where the probability of text areas is inferred through a multi-resolutional attention model, which is consequently fed into a convolutional conditional random field (ConvCRF) to obtain the final binarized document image. In the proposed approach, the features of degraded document image are learned by neural networks and the relations between text areas and backgrounds are inferred by ConvCRF, which avoids the dependence of domain knowledge from researchers and has more generalization capabilities. The experimental results on public datasets show that the proposed method has superior binarization performance than the existing state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DRD损失的多分辨率注意力模型的文档二值化
将文本与背景分离的文档二值化是许多高级文档分析任务的关键预处理步骤。传统的文档二值化方法倾向于利用手工特征和经验规则来模拟文档图像的退化过程,完成二值化任务。在本文中,我们提出了一个深度学习框架,其中通过多分辨率注意力模型推断文本区域的概率,然后将其输入卷积条件随机场(ConvCRF)以获得最终的二值化文档图像。该方法利用神经网络学习退化后的文档图像特征,利用卷积神经循环算法推断文本区域与背景之间的关系,避免了对研究人员领域知识的依赖,具有更强的泛化能力。在公共数据集上的实验结果表明,该方法比现有的先进方法具有更好的二值化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1