Auto-scaling of Web Applications in Clouds: A Tail Latency Evaluation

M. Aslanpour, A. Toosi, R. Gaire, M. A. Cheema
{"title":"Auto-scaling of Web Applications in Clouds: A Tail Latency Evaluation","authors":"M. Aslanpour, A. Toosi, R. Gaire, M. A. Cheema","doi":"10.1109/UCC48980.2020.00037","DOIUrl":null,"url":null,"abstract":"Mechanisms for dynamically adding and removing Virtual Machines (VMs) to reduce cost while minimizing the latency are called auto-scaling. Latency improvements are mainly fulfilled through minimizing the \"average\" response times while unpredictabilities and fluctuations of the Web applications, aka flash crowds, can result in very high latencies for users’ requests. Requests influenced by flash crowd suffer from long latencies, known as outliers. Such outliers are inevitable to a large extent as auto-scaling solutions continue to improve the average, not the \"tail\" of latencies. In this paper, we study possible sources of tail latency in auto-scaling mechanisms for Web applications. Based on our extensive evaluations in a real cloud platform, we discovered sources of a tail latency as 1) large requests, i.e. those data-intensive; 2) long-term scaling intervals; 3) instant analysis of scaling parameters; 4) conservative, i.e. tight, threshold tuning; 5) load-unaware surplus VM selection policies used for executing a scale-down decision; 6) cooldown feature, although cost-effective; and 7) VM start-up delay. We also discovered that after improving the average latency by auto-scaling mechanisms, the tail may behave differently, demanding dedicated tail-aware solutions for auto-scaling mechanisms.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Mechanisms for dynamically adding and removing Virtual Machines (VMs) to reduce cost while minimizing the latency are called auto-scaling. Latency improvements are mainly fulfilled through minimizing the "average" response times while unpredictabilities and fluctuations of the Web applications, aka flash crowds, can result in very high latencies for users’ requests. Requests influenced by flash crowd suffer from long latencies, known as outliers. Such outliers are inevitable to a large extent as auto-scaling solutions continue to improve the average, not the "tail" of latencies. In this paper, we study possible sources of tail latency in auto-scaling mechanisms for Web applications. Based on our extensive evaluations in a real cloud platform, we discovered sources of a tail latency as 1) large requests, i.e. those data-intensive; 2) long-term scaling intervals; 3) instant analysis of scaling parameters; 4) conservative, i.e. tight, threshold tuning; 5) load-unaware surplus VM selection policies used for executing a scale-down decision; 6) cooldown feature, although cost-effective; and 7) VM start-up delay. We also discovered that after improving the average latency by auto-scaling mechanisms, the tail may behave differently, demanding dedicated tail-aware solutions for auto-scaling mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云中Web应用程序的自动伸缩:尾部延迟评估
动态添加和删除虚拟机(vm)以降低成本同时最小化延迟的机制称为自动伸缩。延迟改进主要是通过最小化“平均”响应时间来实现的,而Web应用程序的不可预测性和波动(即flash crowd)可能会导致用户请求的非常高的延迟。受快闪人群影响的请求有很长的延迟,被称为异常值。这种异常值在很大程度上是不可避免的,因为自动缩放解决方案将继续提高平均延迟,而不是延迟的“尾部”。在本文中,我们研究了Web应用程序自动扩展机制中尾部延迟的可能来源。基于我们在真实云平台上的广泛评估,我们发现了尾部延迟的来源:1)大型请求,即那些数据密集型请求;2)长期缩放间隔;3)缩放参数的即时分析;4)保守,即紧,阈值调整;5)用于执行缩减决策的负载不感知剩余VM选择策略;6)冷却功能,虽然性价比高;7)虚拟机启动延迟。我们还发现,在通过自动缩放机制改善平均延迟后,尾部的行为可能会有所不同,这需要针对自动缩放机制的专用尾部感知解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain Mobility Solution for Charging Transactions of Electrical Vehicles Open-source Serverless Architectures: an Evaluation of Apache OpenWhisk Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks Message from the B2D2LM 2020 Workshop Chairs Dynamic Network Slicing in Fog Computing for Mobile Users in MobFogSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1