Update on Triangle Counting on GPU

Carl Pearson, M. Almasri, Omer Anjum, Vikram Sharma Mailthody, Zaid Qureshi, R. Nagi, Jinjun Xiong, Wen-mei W. Hwu
{"title":"Update on Triangle Counting on GPU","authors":"Carl Pearson, M. Almasri, Omer Anjum, Vikram Sharma Mailthody, Zaid Qureshi, R. Nagi, Jinjun Xiong, Wen-mei W. Hwu","doi":"10.1109/HPEC.2019.8916547","DOIUrl":null,"url":null,"abstract":"This work presents an update to the triangle-counting portion of the subgraph isomorphism static graph challenge. This work is motivated by a desire to understand the impact of CUDA unified memory on the triangle-counting problem. First, CUDA unified memory is used to overlap reading large graph data from disk with graph data structures in GPU memory. Second, we use CUDA unified memory hints to solve multi-GPU performance scaling challenges present in our last submission. Finally, we improve the single-GPU kernel performance from our past submission by introducing a work-stealing dynamic algorithm GPU kernel with persistent threads, which makes performance adaptive for large graphs without requiring a graph analysis phase.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This work presents an update to the triangle-counting portion of the subgraph isomorphism static graph challenge. This work is motivated by a desire to understand the impact of CUDA unified memory on the triangle-counting problem. First, CUDA unified memory is used to overlap reading large graph data from disk with graph data structures in GPU memory. Second, we use CUDA unified memory hints to solve multi-GPU performance scaling challenges present in our last submission. Finally, we improve the single-GPU kernel performance from our past submission by introducing a work-stealing dynamic algorithm GPU kernel with persistent threads, which makes performance adaptive for large graphs without requiring a graph analysis phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
更新了GPU上的三角形计数
这项工作提出了对子图同构静态图挑战的三角形计数部分的更新。这项工作的动机是想了解CUDA统一内存对三角形计数问题的影响。首先,使用CUDA统一内存将从磁盘读取的大型图形数据与GPU内存中的图形数据结构重叠。其次,我们使用CUDA统一内存提示来解决我们上次提交的多gpu性能扩展挑战。最后,我们通过引入具有持久线程的工作窃取动态算法GPU内核来改进过去提交的单GPU内核性能,这使得性能自适应于大型图形而无需图形分析阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1