Which Languages do People Speak on Flickr?: A Language and Geo-Location Study of the YFCC100m Dataset

Alireza Koochali, Sebastian Kalkowski, A. Dengel, Damian Borth, Christian Schulze
{"title":"Which Languages do People Speak on Flickr?: A Language and Geo-Location Study of the YFCC100m Dataset","authors":"Alireza Koochali, Sebastian Kalkowski, A. Dengel, Damian Borth, Christian Schulze","doi":"10.1145/2983554.2983560","DOIUrl":null,"url":null,"abstract":"Recently, the Yahoo Flickr Creative Commons 100 Million (YFCC100m) dataset was introduced to the computer vision and multimedia research community. This dataset consists of millions of images and videos spread over the globe. This geo-distribution hints at a potentially large set of different languages being used in titles, descriptions, and tags of these images and videos. Since the YFCC100m metadata does not provide any information about the languages used in the dataset, this paper presents the first analysis of this kind. The language and geo-location characteristics of the YFCC100m dataset is described by providing (a) an overview of used languages, (b) language to country associations, and (c) second language usage in this dataset. Being able to know the language spoken in titles, descriptions, and tags, users of the dataset can make language specific decisions to select subsets of images for, e.g., proper training of classifiers or analyze user behavior specific to their spoken language. Also, this language information is essential for further linguistic studies on the metadata of the YFCC100m dataset.","PeriodicalId":340803,"journal":{"name":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983554.2983560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recently, the Yahoo Flickr Creative Commons 100 Million (YFCC100m) dataset was introduced to the computer vision and multimedia research community. This dataset consists of millions of images and videos spread over the globe. This geo-distribution hints at a potentially large set of different languages being used in titles, descriptions, and tags of these images and videos. Since the YFCC100m metadata does not provide any information about the languages used in the dataset, this paper presents the first analysis of this kind. The language and geo-location characteristics of the YFCC100m dataset is described by providing (a) an overview of used languages, (b) language to country associations, and (c) second language usage in this dataset. Being able to know the language spoken in titles, descriptions, and tags, users of the dataset can make language specific decisions to select subsets of images for, e.g., proper training of classifiers or analyze user behavior specific to their spoken language. Also, this language information is essential for further linguistic studies on the metadata of the YFCC100m dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人们在Flickr上说哪些语言?: YFCC100m数据集的语言与地理定位研究
最近,Yahoo Flickr Creative Commons 1亿(YFCC100m)数据集被引入计算机视觉和多媒体研究社区。这个数据集由遍布全球的数百万张图片和视频组成。这种地理分布暗示着在这些图像和视频的标题、描述和标签中可能会使用大量不同的语言。由于YFCC100m元数据没有提供数据集中使用的语言的任何信息,因此本文首次对此进行了分析。YFCC100m数据集的语言和地理位置特征通过提供(a)使用语言的概述,(b)向国家协会提供的语言,以及(c)该数据集中的第二语言使用情况来描述。能够知道标题、描述和标签中使用的语言,数据集的用户可以做出特定于语言的决策,以选择图像子集,例如,对分类器进行适当的训练,或分析特定于其口语的用户行为。此外,这些语言信息对于YFCC100m数据集元数据的进一步语言学研究至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Which Languages do People Speak on Flickr?: A Language and Geo-Location Study of the YFCC100m Dataset Analysis of Spatial, Temporal, and Content Characteristics of Videos in the YFCC100M Dataset YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval Developing Benchmarks: The Importance of the Process and New Paradigms In-depth Exploration of Geotagging Performance using Sampling Strategies on YFCC100M
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1