EMBER - Analysis of Malware Dataset Using Convolutional Neural Networks

Subhojeet Pramanik, Hemanth Teja
{"title":"EMBER - Analysis of Malware Dataset Using Convolutional Neural Networks","authors":"Subhojeet Pramanik, Hemanth Teja","doi":"10.1109/ICISC44355.2019.9036424","DOIUrl":null,"url":null,"abstract":"The aim of this research is to implement Neural Network algorithms to achieve a model of precision (f1-score and recall) for investigating malevolent Windows portable execution files. The paper utilizes EMBER - a benchmark dataset that contains features extracted from 1.1M binary files. The dataset contains 900K training samples (malicious, benign and unlabeled samples) and 200K test samples and provides numerous cases to build models that enhance information security. So, in order to determine if a given file is a malware or not we implemented algorithms like Convolutional Neural Networks and Feed Forward Neural Networks and assembled the results in terms of accuracy.","PeriodicalId":419157,"journal":{"name":"2019 Third International Conference on Inventive Systems and Control (ICISC)","volume":"2021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Third International Conference on Inventive Systems and Control (ICISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISC44355.2019.9036424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of this research is to implement Neural Network algorithms to achieve a model of precision (f1-score and recall) for investigating malevolent Windows portable execution files. The paper utilizes EMBER - a benchmark dataset that contains features extracted from 1.1M binary files. The dataset contains 900K training samples (malicious, benign and unlabeled samples) and 200K test samples and provides numerous cases to build models that enhance information security. So, in order to determine if a given file is a malware or not we implemented algorithms like Convolutional Neural Networks and Feed Forward Neural Networks and assembled the results in terms of accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络分析恶意软件数据集
本研究的目的是实现神经网络算法,以实现调查恶意Windows可移植执行文件的精度(f1分数和召回率)模型。本文利用了EMBER——一个包含从110万个二进制文件中提取的特征的基准数据集。该数据集包含900K个训练样本(恶意、良性和未标记样本)和200K个测试样本,并提供了许多案例来构建增强信息安全的模型。所以,为了确定一个给定的文件是否是恶意软件,我们实现了卷积神经网络和前馈神经网络这样的算法,并根据准确性组装了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction of Noises From Degraded Document Images Using Image Enhancement Techniques Effective Detection of Voice Dysfunction Using Glottic Flow Descriptors A Survey on Machine Learning in Agriculture - background work for an unmanned coconut tree harvester An Approach of Image Enhancement Technique in Recognizing the Number Plate Location FPGA Implementation of Multiplier-Accumulator Unit using Vedic multiplier and Reversible gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1