Resistive switching characteristics of RRAM devices based on spin-coated a-IGZO thin films and ink-jet printed Ag electrodes

Z. Chen, Z. Liu, W. Ma, Y. Shen, H. Zhang, T. P. Chen
{"title":"Resistive switching characteristics of RRAM devices based on spin-coated a-IGZO thin films and ink-jet printed Ag electrodes","authors":"Z. Chen, Z. Liu, W. Ma, Y. Shen, H. Zhang, T. P. Chen","doi":"10.1109/INEC.2016.7589317","DOIUrl":null,"url":null,"abstract":"In this work, memory devices with Ag/a-IGZO/ITO structures were fabricated mainly based on solution-based synthesis approaches. Specifically, the IGZO thin film was prepared by spin coating of IGZO ink and the top Ag electrodes were formed by ink-jet printing. Electrical measurements showed that Roff/Ron ratio was over two orders and the device resistance and could be maintained up to 105s without degradation.","PeriodicalId":416565,"journal":{"name":"2016 IEEE International Nanoelectronics Conference (INEC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2016.7589317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, memory devices with Ag/a-IGZO/ITO structures were fabricated mainly based on solution-based synthesis approaches. Specifically, the IGZO thin film was prepared by spin coating of IGZO ink and the top Ag electrodes were formed by ink-jet printing. Electrical measurements showed that Roff/Ron ratio was over two orders and the device resistance and could be maintained up to 105s without degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自旋涂覆a-IGZO薄膜和喷墨印刷Ag电极的RRAM器件的电阻开关特性
在这项工作中,主要基于基于溶液的合成方法制备了具有Ag/a-IGZO/ITO结构的存储器件。其中,采用IGZO油墨自旋镀膜的方法制备了IGZO薄膜,并采用喷墨打印的方法形成了顶部Ag电极。电气测量表明,Roff/Ron比超过两个数量级,器件电阻可以维持105秒而不会退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The motion capture data glove device for virtual surgery 100-nm Gate-length GaAs mHEMTs using Si-doped InP/InAlAs Schottky layers and atomic layer deposition Al2O3 passivation with fmax of 388.2 GHz Controlling magnetization switching and DC transport properties of magnetic tunnel junctions by mircowave injection Spin injection and detection in semiconductor nanostructures Self assembled monolayer applications for nano-scale CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1