Deep learning for effective detection of excavated soil related to illegal tunnel activities

Daniel Perez Ibanez, Debrup Banerjee, C. Kwan, Minh Dao, Yuzhong Shen, Kris Koperski, G. Marchisio, Jiang Li
{"title":"Deep learning for effective detection of excavated soil related to illegal tunnel activities","authors":"Daniel Perez Ibanez, Debrup Banerjee, C. Kwan, Minh Dao, Yuzhong Shen, Kris Koperski, G. Marchisio, Jiang Li","doi":"10.1109/UEMCON.2017.8249062","DOIUrl":null,"url":null,"abstract":"This paper presents a new deep learning based approach for soil detection using high resolution multispectral satellite images with a resolution of 0.31 m. In particular, a deep convolutional neural network (CNN) is proposed for soil detection to identify potential tunnel digging activities. Spatial and spectral information in the multispectral image cube has been incorporated into the CNN. We also propose a novel method to handle imbalance learning in the context of deep CNN model training. Experimental results on Worldview-2 (WV-2) multispectral satellite images captured at the border between USA and Mexico showed that the proposed CNN model can effectively detect soil in the remote sensed images, and the proposed imbalance learning technique improved the detection performance significantly.","PeriodicalId":403890,"journal":{"name":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2017.8249062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

This paper presents a new deep learning based approach for soil detection using high resolution multispectral satellite images with a resolution of 0.31 m. In particular, a deep convolutional neural network (CNN) is proposed for soil detection to identify potential tunnel digging activities. Spatial and spectral information in the multispectral image cube has been incorporated into the CNN. We also propose a novel method to handle imbalance learning in the context of deep CNN model training. Experimental results on Worldview-2 (WV-2) multispectral satellite images captured at the border between USA and Mexico showed that the proposed CNN model can effectively detect soil in the remote sensed images, and the proposed imbalance learning technique improved the detection performance significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习有效检测与非法隧道活动相关的挖掘土
本文提出了一种基于深度学习的土壤检测新方法,该方法利用分辨率为0.31 m的高分辨率多光谱卫星图像进行土壤检测。特别提出了一种深度卷积神经网络(CNN)用于土壤检测,以识别潜在的隧道挖掘活动。多光谱图像立方体中的空间和光谱信息被纳入到CNN中。我们还提出了一种新的方法来处理CNN深度模型训练背景下的不平衡学习。在美国和墨西哥边境捕获的Worldview-2 (WV-2)多光谱卫星图像上的实验结果表明,所提出的CNN模型可以有效地检测遥感图像中的土壤,并且所提出的不平衡学习技术显著提高了检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated facial expression recognition app development on smart phones using cloud computing Outage probability and system optimization of SSD-based dual-hop relaying system with multiple relays LTE fallback optimization using decision tree Bio-medical image enhancement using hybrid metaheuristic coupled soft computing tools Study of a parallel algorithm on pipelined computation of the finite difference schemes on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1