OCR-oriented Master Object for Text Image Captioning

Wenliang Tang, Zhenzhen Hu, Zijie Song, Richang Hong
{"title":"OCR-oriented Master Object for Text Image Captioning","authors":"Wenliang Tang, Zhenzhen Hu, Zijie Song, Richang Hong","doi":"10.1145/3512527.3531431","DOIUrl":null,"url":null,"abstract":"Text image captioning aims to understand the scene text in images for image caption generation. The key issue of this challenging task is to understand the relationship between the text OCR tokens and images. In this paper, we propose a novel text image captioning method by purifying the OCR-oriented scene graph with themaster object. The master object is the object to which the OCR is attached, which is the semantic relationship bridge between the OCR token and the image. We consider the master object as a proxy to connect OCR tokens and other regions in the image. By exploring the master object for each OCR token, we build the purified scene graph based on the master objects and then enrich the visual embedding by the Graph Convolution Network (GCN). Furthermore, we cluster the OCR tokens and feed the hierarchical information to provide a richer representation. Experiments on the TextCaps validation and test dataset demonstrate the effectiveness of the proposed method.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Text image captioning aims to understand the scene text in images for image caption generation. The key issue of this challenging task is to understand the relationship between the text OCR tokens and images. In this paper, we propose a novel text image captioning method by purifying the OCR-oriented scene graph with themaster object. The master object is the object to which the OCR is attached, which is the semantic relationship bridge between the OCR token and the image. We consider the master object as a proxy to connect OCR tokens and other regions in the image. By exploring the master object for each OCR token, we build the purified scene graph based on the master objects and then enrich the visual embedding by the Graph Convolution Network (GCN). Furthermore, we cluster the OCR tokens and feed the hierarchical information to provide a richer representation. Experiments on the TextCaps validation and test dataset demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向ocr的文本图像字幕主对象
文本图像字幕旨在理解图像中的场景文本,以便生成图像字幕。这个具有挑战性的任务的关键问题是理解文本OCR令牌和图像之间的关系。本文提出了一种新的文本图像字幕方法,即利用母对象对面向ocr的场景图进行净化。主对象是OCR附加到的对象,它是OCR令牌和图像之间的语义关系桥梁。我们将主对象视为连接OCR令牌和图像中的其他区域的代理。通过探索每个OCR令牌的主对象,在主对象的基础上构建纯化的场景图,然后利用图卷积网络(GCN)丰富视觉嵌入。此外,我们将OCR令牌聚类并提供分层信息以提供更丰富的表示。在TextCaps验证和测试数据集上的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1