{"title":"A high-speed low-complexity two-parallel radix-24 FFT/IFFT processor for UWB applications","authors":"Hanho Lee, Minhyeok Shin","doi":"10.1109/ASSCC.2007.4425686","DOIUrl":null,"url":null,"abstract":"This paper presents a high-speed, low-complexity two data-path 128-point radix-24 FFT/IFFT processor for MB-OFDM ultrawideband (UWB) systems. The proposed FFT processor uses a method for compensating the truncation error of fixed-with Booth multipliers with Dadda reduction network, which keep the input and output the 8-bit width. This method leads to reduction of truncation errors compared with direct-truncated multipliers. It provides lower hardware complexity and high throughput with almost same SQNR compared with direct-truncated Booth multipliers. The proposed FFT/IFFT processor has been designed and implemented with 0.18-mum CMOS technology in a supply voltage of 1.8 V. The proposed two-parallel FFT/IFFT processor has a throughput rate of up to 900 Msample/s at 450 MHz while requiring much smaller hardware complexity.","PeriodicalId":186095,"journal":{"name":"2007 IEEE Asian Solid-State Circuits Conference","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2007.4425686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper presents a high-speed, low-complexity two data-path 128-point radix-24 FFT/IFFT processor for MB-OFDM ultrawideband (UWB) systems. The proposed FFT processor uses a method for compensating the truncation error of fixed-with Booth multipliers with Dadda reduction network, which keep the input and output the 8-bit width. This method leads to reduction of truncation errors compared with direct-truncated multipliers. It provides lower hardware complexity and high throughput with almost same SQNR compared with direct-truncated Booth multipliers. The proposed FFT/IFFT processor has been designed and implemented with 0.18-mum CMOS technology in a supply voltage of 1.8 V. The proposed two-parallel FFT/IFFT processor has a throughput rate of up to 900 Msample/s at 450 MHz while requiring much smaller hardware complexity.