Toward natural interaction in the real world: real-time gesture recognition

Ying Yin, Randall Davis
{"title":"Toward natural interaction in the real world: real-time gesture recognition","authors":"Ying Yin, Randall Davis","doi":"10.1145/1891903.1891924","DOIUrl":null,"url":null,"abstract":"Using a new hand tracking technology capable of tracking 3D hand postures in real-time, we developed a recognition system for continuous natural gestures. By natural gestures, we mean those encountered in spontaneous interaction, rather than a set of artificial gestures chosen to simplify recognition. To date we have achieved 95.6% accuracy on isolated gesture recognition, and 73% recognition rate on continuous gesture recognition, with data from 3 users and twelve gesture classes. We connected our gesture recognition system to Google Earth, enabling real time gestural control of a 3D map. We describe the challenges of signal accuracy and signal interpretation presented by working in a real-world environment, and detail how we overcame them.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Using a new hand tracking technology capable of tracking 3D hand postures in real-time, we developed a recognition system for continuous natural gestures. By natural gestures, we mean those encountered in spontaneous interaction, rather than a set of artificial gestures chosen to simplify recognition. To date we have achieved 95.6% accuracy on isolated gesture recognition, and 73% recognition rate on continuous gesture recognition, with data from 3 users and twelve gesture classes. We connected our gesture recognition system to Google Earth, enabling real time gestural control of a 3D map. We describe the challenges of signal accuracy and signal interpretation presented by working in a real-world environment, and detail how we overcame them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
走向现实世界的自然交互:实时手势识别
利用一种新的手部跟踪技术,能够实时跟踪3D手部姿势,我们开发了一个连续自然手势的识别系统。我们所说的自然手势是指那些在自发互动中遇到的手势,而不是为了简化识别而选择的一组人工手势。迄今为止,我们在孤立手势识别上的准确率达到95.6%,在连续手势识别上的识别率达到73%,数据来自3个用户和12个手势类别。我们将我们的手势识别系统连接到谷歌地球上,实现对3D地图的实时手势控制。我们描述了在现实世界环境中工作所带来的信号精度和信号解释的挑战,并详细介绍了我们如何克服这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feedback is... late: measuring multimodal delays in mobile device touchscreen interaction Conversation scene analysis based on dynamic Bayesian network and image-based gaze detection The Ambient Spotlight: personal multimodal search without query Musical performance as multimodal communication: drummers, musical collaborators, and listeners Automatic recognition of sign language subwords based on portable accelerometer and EMG sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1